
Memory Management in Unity

• Objective: 
 Learn how to profile and optimize 

memory usage across platforms.



Overview
• Scripting back ends
• Managed memory
• Garbage Collection
• Memory fragmentation
• Native vs. managed memory
• Assets
• Code Stripping
• Roots
• Generic Sharing
• Build Report
• Native Memory
• Audio
• Android Memory Management



Important Documentation

• Unity Manual  Managed memory →
section

• Profiling & optimization guides



Scripting back ends

The big difference is JIT vs AOT:
• Mono = JIT (Just-In-Time): 

 C# Intermediate Language is 
compiled to machine code at 
runtime. 

• IL2CPP = AOT (Ahead-Of-Time): 
 C# IL is converted to C++, then 

compiled to native machine code 
before you run it.



What is IL (Intermediate Language)?

• IL is a CPU-independent bytecode 
produced by the C# compiler.

• It is also called CIL or MSIL.
• IL sits between C# source code and 

native machine code.



C# Compilation Pipeline

• C# source code (.cs)
• Compiled to IL inside assemblies 

(.dll/.exe)
• Runtime converts IL to native machine 

code



Why IL Exists

• Portability across platforms
• Runtime optimizations for specific CPUs
• Language interoperability (C#, F#, VB, 

etc.)



Mono and IL

• Mono uses JIT compilation.
• IL is compiled to native code at runtime.
• Allows dynamic features and faster 

iteration.



IL2CPP and IL

• IL2CPP uses AOT compilation.
• IL is converted to C++, then to native 

code before runtime.
• Required on platforms without JIT 

support.



Key Takeaway

• IL is the portable middle layer.
• Mono compiles IL at runtime.
• IL2CPP compiles IL ahead of time.



Mono vs IL2CPP in Unity 6

• Unity provides two C# scripting 
backends:
 Mono (JIT – Just-In-Time)
 IL2CPP (AOT – Ahead-Of-Time)

• They differ in how C# code is compiled 
and executed.



What is IL (Intermediate Language)?

• IL is a CPU-independent bytecode 
produced by the C# compiler.

• It is also called CIL or MSIL.
• IL sits between C# source code and 

native machine code.



C# Compilation Pipeline

• Write C# source code (.cs)
• Compiler converts it to IL (.dll / .exe)
• Runtime converts IL to native machine 

code



Mono Backend (JIT)

• Uses Just-In-Time compilation
• IL is compiled to native code at runtime
• Faster iteration and build times (faster 

compile)
• Supports dynamic and reflection-heavy 

features
• Used by the Unity Editor



IL2CPP Backend (AOT)

• Uses Ahead-Of-Time compilation
• IL is converted to C++ then to native 

code
• Slower build times
• No JIT at runtime
• Required on many platforms



Performance Comparison

• Mono:
 Runtime JIT overhead
 Slower startup in large projects

• IL2CPP:
 No runtime compilation
 Often better runtime performance



Platform Support

• Mono:
 Desktop platforms (Windows, 

macOS, Linux)
IL2CPP:

 Mobile platforms
 Consoles
 WebGL
 Platforms that disallow JIT



Feature Limitations

• Mono supports:
 dynamic keyword
 Reflection.Emit

• IL2CPP limitations:
 No runtime code generation
 Requires care with reflection & 

generics



Recommended Unity Workflow

• Use Mono during development for fast 
iteration

• Regularly test IL2CPP builds
• Ship with IL2CPP when required by 

platform



Key Takeaways

• Mono = JIT, flexible, fast iteration
• IL2CPP = AOT, broader platform support
• Choose based on target platform and 

features



Managed memory

• part of the standard C# scripting 
environment 

• Mono
• IL2CPP



Managed Memory in Unity

• Unity uses a managed memory system 
as part of its C# scripting environment.

• This system is provided by Mono or 
IL2CPP virtual machines.

• The main benefit is automatic memory 
management.



What Is Managed Memory?

• Managed memory automatically 
handles memory allocation and release.

• Developers do not need to manually 
free memory.

• This helps prevent memory leaks.



Main Components of Managed 
Memory

• Managed Heap
• Scripting Stack
• Native VM Memory



Managed Heap

• Controlled by the Garbage Collector 
(GC)

• Stores objects, arrays, strings, and 
boxed values

• Allocations appear as GC.Alloc in the 
Profiler



Scripting Stack

• Fixed-size memory per thread
• Stores local variables and execution 

flow
• Fast allocation and cleanup



Native VM Memory

• Used internally by the scripting VM
• Includes generics and reflection 

metadata
• Not directly accessible from user code



Mono Memory Internals
• Allocates system heap blocks for internal 

allocator
• Will allocate new heap blocks when needed
• Heap blocks are kept in Mono for later use

 Memory can be given back to the system 
after a while

 …but it depends on the platform - don’t 
count on it

• Garbage collector cleans up
• Fragmentation can cause new heap blocks 

even though memory is not exhausted



Unity Object wrapper
• Some Objects used in scripts have large 

native backing memory in unity
• Memory not freed until Finalizers have run

 
•     Managed Native

Decompression buffer
WWW

Compressed file

Decompressed file



Mono Garbage Collection
 GC.Collect

 Runs on the main thread when
 Mono exhausts the heap space
 Or user calls System.GC.Collect()

 Finalizers
 Run on a separate thread

 Controlled by mono
 Can have several seconds delay

 Unity native memory
 Dispose() cleans up 

internal memory
 Eventually called from finalizer
 Manually call Dispose() to cleanup

Main thread Finalizer thread

www = null;

new(someclass);

//no more heap

-> GC.Collect();

www.Dispose();

.....



Garbage Collection
• Roots are not collected in a GC.Collect

 Thread stacks
 CPU Registers

 GC Handles (used by Unity to hold onto 
managed objects)

 Static variables!!
• Collection time scales with managed 

heap size
 The more you allocate, the slower it gets



GC: does lata layout matter ?
struct Stuff
{

int a;

float b; bool c;
string leString;

}
Stuff[] arrayOfStuff; << Everything is scanned. GC takes more time

VS

int[] As; float[] Bs; bool[] Cs;
string[] leStrings; << Only this is scanned. GC takes less time.



GC: Best Practices
• Reuse objects -> Use object pools
• Prefer stack-based allocations -> Use struct 

instead of class
• System.GC.Collect can be used to trigger 

collection
• Calling it 6 times returns the unused memory to 

the OS
• Manually call Dispose to cleanup immediately



Avoid temp allocations
• Don’t use FindObjects or LINQ
• Use StringBuilder for string concatenation
• Reuse large temporary work buffers
• ToString()
• .tag -> use CompareTag() instead



Memory fragmentation
• Memory fragmentation is hard to account for

 Fully unload dynamically allocated content

 Switch to a blank scene before proceeding to next 
level

 This scene could have a hook where you may pause 
the game long enough to sample if there is anything 
significant in memory

• Ensure you clear out variables so GC.Collect will 
remove as much as possible

• Avoid allocations where possible
• Reuse objects where possible within a scene play
• Clear them out for map load to clean the memory



Unloading Unused Assets
• Resources.UnloadUnusedAssets will trigger asset 

garbage collection
• It looks for all unreferenced assets and unloads 

them
• It’s an async operation
• It’s called internally after loading a level
• Resources.UnloadAsset is preferable
• you need to know exactly what you need to Unload
• Unity does not have to scan everything
• Unity uses Multi-threaded asset garbage collection



Automatic Memory Management

• Garbage collector frees memory when 
objects are no longer referenced.

• This prevents memory leaks but can 
affect performance.



Garbage Collection Cost

• Managed allocations consume CPU time
• GC may pause execution
• Large projects can experience GC spikes



Heap Allocations

• All reference types are allocated on the 
heap

• Boxed value types are also heap 
allocated
 Converted to Object type, later can 

me unboxed
• Value types usually live on the stack



Memory Fragmentation

• Freed memory creates gaps in the heap.
• Large allocations may fail despite 

enough total memory.

• This is called memory fragmentation.



Heap Expansion

• If no contiguous space exists:
1. Garbage collection runs
2. Heap expands if needed

• Expanded memory is often retained.



Managed vs Native Memory

• GC does not free native memory.

• Native memory is released via:
 Destroy
 Resources.UnloadUnusedAssets



Freeing Native Memory

• Destroy objects when no longer needed
• Avoid holding unwanted references
• Static fields and events can prevent 

cleanup



Performance Warning

• GC.Collect and UnloadUnusedAssets are 
CPU-intensive.

• They can take several seconds in large 
projects.



Best Practices

• Minimize GC allocations
• Reuse objects
• Use Addressables or AssetBundles
• Profile memory regularly



Key Takeaways

• Managed memory simplifies 
development

• Garbage collection impacts 
performance

• Proper memory handling is essential



Assets

• Assets affect both native and managed 
memory

• Use Destroy(myObject) to release 
memory

• Use structs for short-term objects
• Reuse buffers, avoid never-ending 

coroutines



Scripting Backends

• Mono vs IL2CPP
• IL2CPP: AOT compilation, smaller builds, 

slower build times
• Mono: Faster iteration, supports JIT
• Use IL2CPP for release, Mono for dev 

iteration



Code Stripping

• Reduces unused code  smaller builds→
• Managed Code Stripping (UnityLinker)
• Native Code Stripping (Strip Engine 

Code)
• WebGL supports module stripping
• Optional in Mono, enabled in IL2CPP



Roots

• “Roots” are entry points Unity keeps in 
builds
 Starting points which GC uses to 

decide which managed objects are 
still allive

 



Why roots matter in Unity

• Memory leaks
 If you forget to clear a root 

(especially static fields or events), 
memory will never be freed.

• Why objects don’t get collected?
 Because something is still rooting it :)



Why roots matter in Unity

• Memory Profiler & “Managed Roots”
• In Unity’s Memory Profiler, you’ll see:

 Managed Roots
 Root Paths

• These show why an object is still alive.



Roots simple mental model

• Roots are the “starting anchors” of 
memory.
 If an object can be reached from a 

root, it stays alive.
• Or even simpler:

 No root  no reference  object can → →
be collected.



Generics Sharing

• IL2CPP uses generic sharing to 
minimize code duplication in Generics 
methods
 Only for Generics
 doesn't share value types

• Reduces build size and memory 
overhead



Assembly Definition Files

• Split code into smaller assemblies
• Benefits: Faster compilation, targeted 

stripping, clear dependency 
management

• While multiple assemblies do grant 
modularity, they also increase the 
application’s binary size and runtime 
memory. 

• Tests show that the executable can 
grow by up to 4kB per assembly.



Build Report

• Build Report is an API which is included 
in Unity but has no UI.

• buildreport file: what is stripped and 
why it was stripped from the final 
executable.

• Use Build Report to identify large assets 
and modules

• Optimize large textures, meshes, or 
audio files



Build Report
• To preview the stripping information:
 Build your project.
 Leave the Editor open.
 Connect to 

http://files.unity3d.com/build-report/

The Build Report tool connects to your running 
Unity Editor, downloads and presents the 
breakdown of the build report.

http://files.unity3d.com/build-report/


Native Memory

• Profiling tools: Unity Profiler, Memory 
Profiler package

• Optimize native allocations and asset 
loading



Native Memory in Unity

• Native memory is a critical part of Unity 
performance optimization.

• Most of Unity’s engine code runs in 
native (C++) memory.

• Developers have limited direct control 
over Unity’s internal native systems.



Unity Native Allocators

• Unity uses multiple native allocators 
and buffers:

• Persistent buffers (constant buffers)
• Dynamic buffers (back buffers)
• Block allocators reused across systems



Key Native Systems

• Scratchpad:
 4MB buffer pool for constants
 Bound to GPU and reused each 

frame

• Ring Buffer:
 Used for async texture uploads
 Cannot be released once allocated



Assets and Native Memory

• Assets consume both managed and 
native memory.

• Ways to reduce native memory:
 Reduce mesh channels
 Optimize animations and LODs
 Lower texture resolution via 

mipmaps



Native Memory Pitfalls

• AssetBundles allocate persistent blocks
• Cloned materials are not garbage 

collected
• Scene unload does not unload assets

• Use Resources.UnloadUnusedAssets() 
when needed.



Audio

• Audio clips use significant memory
• Prefer compressed formats
• Stream long clips instead of fully 

loading them



Android Memory Management

• Android devices have tighter RAM limits
• Use smaller assets and compressed 

textures
• Optimize GC frequency and IL2CPP 

builds



Summary

• Understand managed vs. native 
memory

• Use IL2CPP and stripping for lean builds
• Profile regularly and optimize assets
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