
Memory Management in Unity

• Objective:
 Learn how to profile and optimize

memory usage across platforms.

Overview
• Scripting back ends
• Managed memory
• Garbage Collection
• Memory fragmentation
• Native vs. managed memory
• Assets
• Code Stripping
• Roots
• Generic Sharing
• Build Report
• Native Memory
• Audio
• Android Memory Management

Important Documentation

• Unity Manual Managed memory →
section

• Profiling & optimization guides

Scripting back ends

The big difference is JIT vs AOT:
• Mono = JIT (Just-In-Time):

 C# Intermediate Language is
compiled to machine code at
runtime.

• IL2CPP = AOT (Ahead-Of-Time):
 C# IL is converted to C++, then

compiled to native machine code
before you run it.

What is IL (Intermediate Language)?

• IL is a CPU-independent bytecode
produced by the C# compiler.

• It is also called CIL or MSIL.
• IL sits between C# source code and

native machine code.

C# Compilation Pipeline

• C# source code (.cs)
• Compiled to IL inside assemblies

(.dll/.exe)
• Runtime converts IL to native machine

code

Why IL Exists

• Portability across platforms
• Runtime optimizations for specific CPUs
• Language interoperability (C#, F#, VB,

etc.)

Mono and IL

• Mono uses JIT compilation.
• IL is compiled to native code at runtime.
• Allows dynamic features and faster

iteration.

IL2CPP and IL

• IL2CPP uses AOT compilation.
• IL is converted to C++, then to native

code before runtime.
• Required on platforms without JIT

support.

Key Takeaway

• IL is the portable middle layer.
• Mono compiles IL at runtime.
• IL2CPP compiles IL ahead of time.

Mono vs IL2CPP in Unity 6

• Unity provides two C# scripting
backends:
 Mono (JIT – Just-In-Time)
 IL2CPP (AOT – Ahead-Of-Time)

• They differ in how C# code is compiled
and executed.

What is IL (Intermediate Language)?

• IL is a CPU-independent bytecode
produced by the C# compiler.

• It is also called CIL or MSIL.
• IL sits between C# source code and

native machine code.

C# Compilation Pipeline

• Write C# source code (.cs)
• Compiler converts it to IL (.dll / .exe)
• Runtime converts IL to native machine

code

Mono Backend (JIT)

• Uses Just-In-Time compilation
• IL is compiled to native code at runtime
• Faster iteration and build times (faster

compile)
• Supports dynamic and reflection-heavy

features
• Used by the Unity Editor

IL2CPP Backend (AOT)

• Uses Ahead-Of-Time compilation
• IL is converted to C++ then to native

code
• Slower build times
• No JIT at runtime
• Required on many platforms

Performance Comparison

• Mono:
 Runtime JIT overhead
 Slower startup in large projects

• IL2CPP:
 No runtime compilation
 Often better runtime performance

Platform Support

• Mono:
 Desktop platforms (Windows,

macOS, Linux)
IL2CPP:

 Mobile platforms
 Consoles
 WebGL
 Platforms that disallow JIT

Feature Limitations

• Mono supports:
 dynamic keyword
 Reflection.Emit

• IL2CPP limitations:
 No runtime code generation
 Requires care with reflection &

generics

Recommended Unity Workflow

• Use Mono during development for fast
iteration

• Regularly test IL2CPP builds
• Ship with IL2CPP when required by

platform

Key Takeaways

• Mono = JIT, flexible, fast iteration
• IL2CPP = AOT, broader platform support
• Choose based on target platform and

features

Managed memory

• part of the standard C# scripting
environment

• Mono
• IL2CPP

Managed Memory in Unity

• Unity uses a managed memory system
as part of its C# scripting environment.

• This system is provided by Mono or
IL2CPP virtual machines.

• The main benefit is automatic memory
management.

What Is Managed Memory?

• Managed memory automatically
handles memory allocation and release.

• Developers do not need to manually
free memory.

• This helps prevent memory leaks.

Main Components of Managed
Memory

• Managed Heap
• Scripting Stack
• Native VM Memory

Managed Heap

• Controlled by the Garbage Collector
(GC)

• Stores objects, arrays, strings, and
boxed values

• Allocations appear as GC.Alloc in the
Profiler

Scripting Stack

• Fixed-size memory per thread
• Stores local variables and execution

flow
• Fast allocation and cleanup

Native VM Memory

• Used internally by the scripting VM
• Includes generics and reflection

metadata
• Not directly accessible from user code

Mono Memory Internals
• Allocates system heap blocks for internal

allocator
• Will allocate new heap blocks when needed
• Heap blocks are kept in Mono for later use

 Memory can be given back to the system
after a while

 …but it depends on the platform - don’t
count on it

• Garbage collector cleans up
• Fragmentation can cause new heap blocks

even though memory is not exhausted

Unity Object wrapper
• Some Objects used in scripts have large

native backing memory in unity
• Memory not freed until Finalizers have run

• Managed Native

Decompression buffer
WWW

Compressed file

Decompressed file

Mono Garbage Collection
 GC.Collect

 Runs on the main thread when
 Mono exhausts the heap space
 Or user calls System.GC.Collect()

 Finalizers
 Run on a separate thread

 Controlled by mono
 Can have several seconds delay

 Unity native memory
 Dispose() cleans up

internal memory
 Eventually called from finalizer
 Manually call Dispose() to cleanup

Main thread Finalizer thread

www = null;

new(someclass);

//no more heap

-> GC.Collect();

www.Dispose();

.....

Garbage Collection
• Roots are not collected in a GC.Collect

 Thread stacks
 CPU Registers

 GC Handles (used by Unity to hold onto
managed objects)

 Static variables!!
• Collection time scales with managed

heap size
 The more you allocate, the slower it gets

GC: does lata layout matter ?
struct Stuff
{

int a;

float b; bool c;
string leString;

}
Stuff[] arrayOfStuff; << Everything is scanned. GC takes more time

VS

int[] As; float[] Bs; bool[] Cs;
string[] leStrings; << Only this is scanned. GC takes less time.

GC: Best Practices
• Reuse objects -> Use object pools
• Prefer stack-based allocations -> Use struct

instead of class
• System.GC.Collect can be used to trigger

collection
• Calling it 6 times returns the unused memory to

the OS
• Manually call Dispose to cleanup immediately

Avoid temp allocations
• Don’t use FindObjects or LINQ
• Use StringBuilder for string concatenation
• Reuse large temporary work buffers
• ToString()
• .tag -> use CompareTag() instead

Memory fragmentation
• Memory fragmentation is hard to account for

 Fully unload dynamically allocated content

 Switch to a blank scene before proceeding to next
level

 This scene could have a hook where you may pause
the game long enough to sample if there is anything
significant in memory

• Ensure you clear out variables so GC.Collect will
remove as much as possible

• Avoid allocations where possible
• Reuse objects where possible within a scene play
• Clear them out for map load to clean the memory

Unloading Unused Assets
• Resources.UnloadUnusedAssets will trigger asset

garbage collection
• It looks for all unreferenced assets and unloads

them
• It’s an async operation
• It’s called internally after loading a level
• Resources.UnloadAsset is preferable
• you need to know exactly what you need to Unload
• Unity does not have to scan everything
• Unity uses Multi-threaded asset garbage collection

Automatic Memory Management

• Garbage collector frees memory when
objects are no longer referenced.

• This prevents memory leaks but can
affect performance.

Garbage Collection Cost

• Managed allocations consume CPU time
• GC may pause execution
• Large projects can experience GC spikes

Heap Allocations

• All reference types are allocated on the
heap

• Boxed value types are also heap
allocated
 Converted to Object type, later can

me unboxed
• Value types usually live on the stack

Memory Fragmentation

• Freed memory creates gaps in the heap.
• Large allocations may fail despite

enough total memory.

• This is called memory fragmentation.

Heap Expansion

• If no contiguous space exists:
1. Garbage collection runs
2. Heap expands if needed

• Expanded memory is often retained.

Managed vs Native Memory

• GC does not free native memory.

• Native memory is released via:
 Destroy
 Resources.UnloadUnusedAssets

Freeing Native Memory

• Destroy objects when no longer needed
• Avoid holding unwanted references
• Static fields and events can prevent

cleanup

Performance Warning

• GC.Collect and UnloadUnusedAssets are
CPU-intensive.

• They can take several seconds in large
projects.

Best Practices

• Minimize GC allocations
• Reuse objects
• Use Addressables or AssetBundles
• Profile memory regularly

Key Takeaways

• Managed memory simplifies
development

• Garbage collection impacts
performance

• Proper memory handling is essential

Assets

• Assets affect both native and managed
memory

• Use Destroy(myObject) to release
memory

• Use structs for short-term objects
• Reuse buffers, avoid never-ending

coroutines

Scripting Backends

• Mono vs IL2CPP
• IL2CPP: AOT compilation, smaller builds,

slower build times
• Mono: Faster iteration, supports JIT
• Use IL2CPP for release, Mono for dev

iteration

Code Stripping

• Reduces unused code smaller builds→
• Managed Code Stripping (UnityLinker)
• Native Code Stripping (Strip Engine

Code)
• WebGL supports module stripping
• Optional in Mono, enabled in IL2CPP

Roots

• “Roots” are entry points Unity keeps in
builds
 Starting points which GC uses to

decide which managed objects are
still allive

Why roots matter in Unity

• Memory leaks
 If you forget to clear a root

(especially static fields or events),
memory will never be freed.

• Why objects don’t get collected?
 Because something is still rooting it :)

Why roots matter in Unity

• Memory Profiler & “Managed Roots”
• In Unity’s Memory Profiler, you’ll see:

 Managed Roots
 Root Paths

• These show why an object is still alive.

Roots simple mental model

• Roots are the “starting anchors” of
memory.
 If an object can be reached from a

root, it stays alive.
• Or even simpler:

 No root no reference object can → →
be collected.

Generics Sharing

• IL2CPP uses generic sharing to
minimize code duplication in Generics
methods
 Only for Generics
 doesn't share value types

• Reduces build size and memory
overhead

Assembly Definition Files

• Split code into smaller assemblies
• Benefits: Faster compilation, targeted

stripping, clear dependency
management

• While multiple assemblies do grant
modularity, they also increase the
application’s binary size and runtime
memory.

• Tests show that the executable can
grow by up to 4kB per assembly.

Build Report

• Build Report is an API which is included
in Unity but has no UI.

• buildreport file: what is stripped and
why it was stripped from the final
executable.

• Use Build Report to identify large assets
and modules

• Optimize large textures, meshes, or
audio files

Build Report
• To preview the stripping information:
 Build your project.
 Leave the Editor open.
 Connect to

http://files.unity3d.com/build-report/

The Build Report tool connects to your running
Unity Editor, downloads and presents the
breakdown of the build report.

http://files.unity3d.com/build-report/

Native Memory

• Profiling tools: Unity Profiler, Memory
Profiler package

• Optimize native allocations and asset
loading

Native Memory in Unity

• Native memory is a critical part of Unity
performance optimization.

• Most of Unity’s engine code runs in
native (C++) memory.

• Developers have limited direct control
over Unity’s internal native systems.

Unity Native Allocators

• Unity uses multiple native allocators
and buffers:

• Persistent buffers (constant buffers)
• Dynamic buffers (back buffers)
• Block allocators reused across systems

Key Native Systems

• Scratchpad:
 4MB buffer pool for constants
 Bound to GPU and reused each

frame

• Ring Buffer:
 Used for async texture uploads
 Cannot be released once allocated

Assets and Native Memory

• Assets consume both managed and
native memory.

• Ways to reduce native memory:
 Reduce mesh channels
 Optimize animations and LODs
 Lower texture resolution via

mipmaps

Native Memory Pitfalls

• AssetBundles allocate persistent blocks
• Cloned materials are not garbage

collected
• Scene unload does not unload assets

• Use Resources.UnloadUnusedAssets()
when needed.

Audio

• Audio clips use significant memory
• Prefer compressed formats
• Stream long clips instead of fully

loading them

Android Memory Management

• Android devices have tighter RAM limits
• Use smaller assets and compressed

textures
• Optimize GC frequency and IL2CPP

builds

Summary

• Understand managed vs. native
memory

• Use IL2CPP and stripping for lean builds
• Profile regularly and optimize assets

	Memory Management in Unity
	Overview
	Important Documentation
	Scripting back ends
	What is IL (Intermediate Language)?
	C# Compilation Pipeline
	Why IL Exists
	Mono and IL
	IL2CPP and IL
	Key Takeaway
	Mono vs IL2CPP in Unity 6
	What is IL (Intermediate Language)? (2)
	C# Compilation Pipeline (2)
	Mono Backend (JIT)
	IL2CPP Backend (AOT)
	Performance Comparison
	Platform Support
	Feature Limitations
	Recommended Unity Workflow
	Key Takeaways
	Managed memory
	Managed Memory in Unity
	What Is Managed Memory?
	Main Components of Managed Memory
	Managed Heap
	Scripting Stack
	Native VM Memory
	Mono Memory Internals
	Unity Object wrapper
	Mono Garbage Collection
	Garbage Collection
	GC: does lata layout matter ?
	GC: Best Practices
	Avoid temp allocations
	Memory fragmentation
	Unloading Unused Assets
	Automatic Memory Management
	Garbage Collection Cost
	Heap Allocations
	Memory Fragmentation
	Heap Expansion
	Managed vs Native Memory
	Freeing Native Memory
	Performance Warning
	Best Practices
	Key Takeaways (2)
	Assets
	Scripting Backends
	Code Stripping
	Roots
	Why roots matter in Unity
	Why roots matter in Unity (2)
	Roots simple mental model
	Generics Sharing
	Assembly Definition Files
	Build Report
	Build Report (2)
	Native Memory
	Native Memory in Unity
	Unity Native Allocators
	Key Native Systems
	Assets and Native Memory
	Native Memory Pitfalls
	Audio
	Android Memory Management
	Summary

