TCS II Formal Languages and Computability 2018/19 1st Midterm (B)

0		:1	\sim	110
Х	\mathbf{A}_{1}	pril	- 71	119
ο.	1 L			'1'

Solve the assignments on your own.	
Time limit is 80 minutes.	

Good luck!

ASSIGNMENT	POINTS	OUT OF	ASSIGNMENT	POINTS	OUT OF
1			2		
3			4		

FIRST AND LAST NAME:	
STUDENT ID:	
STODENT ID.	
CLONIBUDE	
Signiture:	

2

1. Assignment: (30 points)

Let's define languages:

$$L_1 = \{0^n w \mid w \text{ is an arbitrary string containing 0's and 1's, of length } n\}, \Sigma = \{0, 1\}$$

 $L_2 = \{w \mid a^*b(aa+c)^*\}, \Sigma = \{a, b, c\}$

QUESTIONS:

For every language:

1. Find out if the language is regular or not, justify your claim!

INSTRUCTIONS:

If a language is regular, construct a deterministic finite automaton (DFA) – write down the complete 5-touple. If the language is not regular, you must prove that such an automaton cannot be constructed (pumping lemma for regular languages).

2. For every language, define a context free grammar (CFG) for it.

3

2. Assignment: (20 points)

You are given the following ε -NFA:

QUESTIONS:

Transform the ε -NFA to a DFA using the procedure(s) shown in class.

3. Assignment: (25 points)

You are given the following automaton:

QUESTIONS:

Minimize the automaton using the table filling method.

5

4. Assignment: (25 points)

You are given the following context free grammar (CFG), $\Sigma = \{a, b, c\}$:

$$\begin{split} S &\to ABC \mid AB \mid BCD \\ A &\to aaAa \mid BbA \mid \varepsilon \\ B &\to A \mid bB \\ C &\to Cc \mid c \\ D &\to aD \mid bDc \end{split}$$

QUESTIONS:

Turn this grammar into Chomsky Normal Form (CNF) – write down the complete procedure.