TCS II Formal Languages and Computability 2018/19 2nd Midterm (A)

29. May 2019

Solve the assignments on your own.
Time limit is 90 minutes.
Good luck!

ASSIGNMENT	POINTS	OUT OF	ASSIGNMENT	POINTS	OUT OF
1			2		
3			4		

FIRST AND LAST NAME:	
STUDENT ID:	
Signiture:	

2

1. Assignment: (25 points)

Let's define the language:

$$L_1 = \left\{ a^n b^{2n} \mid n > 0 \right\}$$

QUESTIONS:

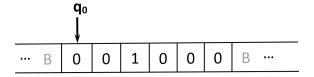
- 1. Construct a PDA for L_1 . For the PDA, write down the 7-tuple defining it!
- 2. Write the grammar for L_1 .

3

2. Assignment: (25 points)

You are given the following context free grammar (CFG) G, $\Sigma = \{a, b, c, d\}$:

$$\begin{split} S &\to ACBD \\ A &\to aA \mid a \\ B &\to b \mid A \\ C &\to c \\ D &\to dD \mid dd \mid a \end{split}$$


QUESTIONS:

- 1. Turn this grammar into Chomsky Normal Form (CNF) (if needed).
- 2. Using the CYK algorithm, check if the word acadd is in the language defined by grammar G.

3. Assignment: (30 points)


Construct a Turing machine (TM) that performs the addition of 2 natural numbers (greater than 0) in "unary" notation. Each of the numbers must be represented as a sequence of all 0s; the two numbers should be separated by a single 1; B denotes the blank tape. Start in state q_0 with the read/write head of the TM positioned at the leftmost character representing the first number.

This picture represents the initial configuration of your TM with the numbers 2 and 3 on the input tape:

The result of your TM should be a single natural number, also in "unary" notation, with the read/write head positioned at its leftmost character, and the control unit in the (only) final state q_F .

This picture represents the final configuration of your TM with the results 5 (= 2 + 3) on the input tape:

QUESTIONS:

- 1. Write down the δ -function of the TM.
- 2. Using the Instantaneous descriptions (IDs), show how your TM computes 2+3=5.

4. Assignment: (20 points)

You are given the following Boolean (or logical) expression (X, Y and Z are boolean variables; concatenation, + and - represent the operations <math>AND, OR and NOT, respectively):

$$(X+Y)(-Z)$$

QUESTIONS:

- 1. Convert the given Boolean expression first to Conjunctive Normal Form (CNF) (if needed) and then to 3–Conjunctive Normal Form (3–CNF).
- 2. What is the budget of the Vertex Cover (VC) generated from the 3–CNF in the previous question?

HINT: You do not have to actually make the whole conversion from 3–CNF to VC; just write down the budget.