# Theoretical Computer Science II Formal Languages and Computability 2018/19 Written Exam

| _ | _    | _        |     | _ |
|---|------|----------|-----|---|
| 7 | Inne | $\gamma$ | ኅ 1 | a |
| , |      |          | ,,, | ч |

Solve the assignments on your own.

Time limit is 90 minutes.

| Best of luck! |        |        |            |        |        |
|---------------|--------|--------|------------|--------|--------|
|               |        |        |            |        |        |
|               |        |        |            |        |        |
| ASSIGNMENT    | POINTS | OUT OF | ASSIGNMENT | POINTS | OUT OF |
|               |        |        |            |        |        |
| 1             |        |        | 2          |        |        |
|               |        |        |            |        |        |

| FIRST AND LAST NAME: |  |
|----------------------|--|
|                      |  |
| STUDENT ID:          |  |
|                      |  |
| SIGNITURE:           |  |

2

#### **1. Assignment:** (30 points)

Let's define languages:

$$\begin{array}{lll} L_1 &=& \{wx^n\mid w \text{ is an arbitrary string containing } x\text{'s and } y\text{'s, of length } n\}\,, \\ \Sigma &=& \{w\mid (0+11)^*10\}\,, \\ \Sigma &=& \{0,1\} \end{array}$$

QUESTIONS: For every language:

- 1. Find out if the language is regular or not, justify your claim!
- 2. For every language, define a grammar for it.

#### INSTRUCTIONS:

If a language is regular, construct a deterministic finite automaton (you get some points for a non-deterministic one). If the language is not regular you must show that such an automaton cannot be constructed (pumping lemma for RL).

# **2. Assignment:** (15 points)

You are given the following NFA:



## QUESTIONS:

Transform the NFA to a DFA using the procedure shown in class.

# **3. Assignment:** (25 points)

You are given the following context-free grammar:

$$\begin{array}{cccc} S & \rightarrow & EGFH \\ E & \rightarrow & eE \mid e \\ F & \rightarrow & f \mid E \\ G & \rightarrow & g \\ H & \rightarrow & hH \mid hh \mid e \end{array}$$

## QUESTIONS:

- 1. Convert the grammar into the Chomsky normal form (show all steps of the conversion).
- 2. Use the CYK algorithm to check if the word egehh is in the language of the grammar.

5

#### **4. Assignment:** (30 points)

Let's define the following language:

$$L_3 = \left\{ w0w^R \mid w \in (a+b)^* \right\}$$

#### QUESTIONS:

- 1. Construct a Turing machine for the language  $L_3$ . Write down the complete 7-touple defining the TM.
- 2. Use instantaneous descriptions of the TM to show the derivation of the word ab0ba.