

Marie Skłodowska Curie Alkanes & IUPAC

Representation of Organic molecules

Structural isomers: same molecular formula, different compounds

T meltingDensity-0,5°C0,579 g/mL

-11,6°C 0,549 g/mL

C₄H₁₀ Molecular formula

Nomenclature

International Union of Pure and Applied Chemistry (IUPAC)

The names prescribed by IUPAC are systematic, meaning that one name describes a specific compound and vice versa. We also use trivial names for compounds commonly found in everyday life (acetic acid, formic acid ...).

Nomenclature

Prefix

Determines the position of the radical, functional groups and / or multiple bonds

Root

Based on the number of carbon atoms in the continuous chain

Suffix

Specifies the functional group

Functional groups

Are defined by subunits and bonds that determine their chemical reactivity

Picture from modernochem

Example of nomenclature

- ALK (root) ANE (suffix saying there are only single bonds between carbon atoms)
- * ALK (root) ENE (suffix saying there is a double bond)
- * ALK (root) YNE (suffix saying there is a triple bond)

Nomenclature

Name	Formula	Suffix/Prefix
Carboxylic Acids	-COOH	-oic acid
Esters	-COOR	-oate
Halogenoid Acids	-COX	Chloro-/Bromo- etc.
Amides	-CONH ₂	-ide
Nitriles	-CN	Cyano-
Aldehydes	-CHO	-al
Ketones	-CO-	-one
Alcohols	-OH	-ol
Phenols	-OH	Pheno(1)-
Amines	-NH ₂	-amine
Ethers	-OR	-ethane

Why are functional groups mentioned in the name?

Alkane

Alkane are simples **hydrocarbons**, they only have single bonds, no functional group and their molecular formula is C_nH_{2n+2}

Relatively nonpolar Relatively unreactive

They can be in circular form (**Cycloalkanes**)

Alkane

Molecular formula	Name	T boiling [°C]	T melting [°C]	
CH_4	Methane	-164	-182	
C_2H_6	I ₆ Ethane -89		-183	
C_3H_8	Propane	-42	-190	
C_4H_{10}	Butane	0	-138	
C_5H_{12}	Pentane	36	-130	
C_6H_{14}	Hexane	69	-95	
C_7H_{16}	Heptane	98	-91	
$C_{8}H_{18}$	Octane	126	-57	
$C_{9}H_{20}$	Nonane	151	-51	
$C_{10}H_{22}$	Decane	174	-30	

Alkanes

Hydrocarbons without functional groups

Straight chain: CH₃CH₂CH₂CH₃

Line notation:

 $C_{4}H_{10}$ Butane H Branched: CH_{3} -C- CH_{3} I $C_{4}H_{10}$ CH_{3} CH_{3}

Homologous Series

Insert - CH_2 - groups into C-C bonds.

Straight chain CH₃(CH₂)_xCH₃

General molecular formula for acyclic systems.

Cyclic alkanes: $C_n H_{2n}$

What about functional groups? C_5H_{12}

 $CH_3 - CH_2 - Br$ Haloalkanes Bromoethane

Alchohols

2-Propanol

 $CH_3 - CH_2 - O - CH_3$ EthersMethoxyethane $CH_3 - CH_2 - SH$ ThiolsEthanethiol

Alkenes and Alkynes

Alkane Name	Alkene name	Alkyne name	
Methane	-	-	
Ethane	Ethene	Ethyne	
Propane	Propene	Propyne	
Butane	Butene	But <mark>yne</mark>	
Pentane	Pentene	Pentyne	
Hexane	Hexene	Hexyne	
Heptane	Heptene	Heptyne	
Octane	Octene	Octyne	
Nonane	Nonene	Non <mark>yne</mark>	
Decane	Decene	Decyne	

Alkenes and aromatic compounds (Arenes)

Determine the primary functional group

If more than one, set priority

• Usually the most oxidized has highest priority (will be suffix, others will be prefix)

Alkene&Alkyne cannot be prefix

• If higher priority groups are present: root - en/yn - suffix

Suffix: –al Prefix: hydroxy-

-enol Pictures from Vollhardt & Schore

Determine the primary carbon chain which contains the primary functional group.

If there is more than one option, choose the chain with the maximum number of multiple bonds

If there are two chains of the same length, choose the one with the maximum number of substituents

If there are two chains of the same length, choose the one with the maximum number of substituents

Carbons should be numbered so that the primary functional group has the lowest possible number. If it's the same, then number it so that other substituents also have the lowest possible number. If it's the same, then number the chain so the first substituent in alphabetical order has the smaller number

6 carbons Alkene Now the substituent Alkane 2 carbons On 2nd carbon

hex-

-ene

Longest chain?

Substituents?

Final name? We proceed alphabetically

1-Bromo-5-(1-chloroethyl)-7-iodo-2,2-dimethyloctane

Rotation with Newman projections

Steric hindrance

Isomeric Rotamers – with increasing complexity the number of conformations increases too

However...

Picture from Vollhardt & Schore

The stereoisomers have the same molecular and structural formula and a different threedimensional structure. Switching from one shape to another is only possible when the ring is opened. Both isomers have different properties (T boiling).

Physical Properties Of Alkanes Intermolecular Forces Increase With Size

Intermolecular Forces

Salts

Picture by Pablo Bustos

Polar molecules

Alkanes (alkyls)

Natural alkanes and alkenes

Pheromones

A complex mixture of alkanes and alkenes, containing different numbers carbon atoms (>20) depending on the species.

The fragrance of this mixture attracts sexual partners, but is also mimiched by some plants for pollination purposes.

Reactions

Combustion

 $CH_4 + 2 O_2 \rightarrow CO_2 + H_2O + energy (heat of combustion \Delta H^{\circ}comb)$

ΔH° comb \uparrow with \uparrow length of C-chain Isomeric alkanes **don't** have the same ΔH° comb

Radical halogenation and bond strength

Reactions require bond breaking and bond making

Bond strengths: homolytic cleavage

 $\Delta H = DH^{\circ} =$ Bond dissociation energy (kcal mol⁻¹)

This process contrasts with heterolytic cleavage

 $A \xrightarrow{\frown B} \longrightarrow A^+ + B^-$

For example: $H_2O + H_2O \iff H_3O + OH$ but $H \rightleftharpoons OH, DH^\circ = +119$

C-H Bond Strengths

To functionalize alkanes, we need to break C - H

But: Are all C–H bonds the same ?

DH° s decrease along the series: $CH_4 > R_{prim} - H > R_{sec} - H > R_{tert} - H$

Structure of alkyl radicals R[•] is *sp*²-hybridized.

Substitution stabilizes the radical. How?

Hyperconjugation

p-Orbital (with single e) overlaps with bonding molecular orbital of neighboring C-H (or any other) bond.

More neighboring bonds: more hyperconjugation

Prediction: The more substituted C-H should be more reactive

Breaking longer carbon-chains into shorter ones

Catalyst

Picture by Pablo Bustos

Radical Halogenation: Methane And Chlorine (Kcal Mol⁻¹)

Exothermic, but needs heat (Δ) (300°C) and/or (UV)light to start.

 $= +58 \text{ kcal mol}^{-1} (+243 \text{ kJ mol}^{-1})$

 $\begin{array}{c} \overbrace{\text{Cl}:}^{\Delta \text{ or } h\nu} \\ \end{array} \qquad 2: \overbrace{\text{Cl}}^{i} \qquad \Delta H^{\circ} = DH^{\circ}(\text{Cl}_2) \end{array}$

Chlorine atom

Mechanism

1. Initiation: "lighting the match"

2. Propagation ("fire"): A radical chain mechanism

Note: Initiation step **does not enter** into equation. Only a few Cl• needed to convert all of the starting material.

3. Termination: Kills propagation

$$: \underbrace{Cl} \stackrel{\frown}{+} \underbrace{Cl}: \longrightarrow Cl - Cl$$
$$: \underbrace{Cl} \stackrel{\frown}{+} \underbrace{CH_3} \longrightarrow CH_3 - \underbrace{CH_3} \stackrel{\frown}{-} \underbrace{CH_3} \xrightarrow{-} CH_3 - \underbrace{CH_3} - \underbrace$$

Radical chain mechanism

Write a detailed mechanism for the light-initiated monochlorination of ethane, which furnishes chloroethane. Calculate ΔH° for each step.

Begin by writing the overall equation for the reaction and calculating its ΔH° , using data in these tables and the formula $\Delta H^{\circ} = \sum \Delta H^{\circ}$ (bonds broken) - $\sum \Delta H^{\circ}$ (bonds formed). Then write the initiation, propagation, and termination steps for a typical radical chain mechanism.

Table 3-1	Bond-Dissociation Ene	rgies of Various	A–B Bonds in t	he Gas Phase [<i>DH</i> ° in kcal mo	pl^{-1} (kJ mol ⁻¹)]	
		B in A–B					
A in A–B –	-Н	-F	-Cl	-Br	-I	-OH	-NH ₂
H—	104 (435)	136 (569)	103 (431)	87 (364)	71 (297)	119 (498)	108 (452)
CH ₃ —	105 (439)	110 (460)	85 (356)	70 (293)	57 (238)	93 (389)	84 (352)
CH ₃ CH ₂ —	101 (423)	111 (464)	84 (352)	70 (293)	56 (234)	94 (393)	85 (356)
CH ₃ CH ₂ CH ₂ -	- 101 (423)	110 (460)	85 (356)	70 (293)	56 (234)	92 (385)	84 (352)
(CH ₃) ₂ CH-	98.5 (412)	111 (464)	84 (352)	71 (297)	56 (234)	96 (402)	86 (360)
(CH ₃) ₃ C	96.5 (404)	110 (460)	85 (356)	71 (297)	55 (230)	96 (402)	85 (356)
C							

Note: (a) $DH^{\circ} = \Delta H^{\circ}$ for the process $A-B \rightarrow A \cdot + \cdot B$. (b) These numbers are being revised continually because of improved methods for their measurement. (c) The trends observed for A–H bonds are significantly altered for polar A–B bonds because of dipolar contributions to DH° .

Table 3-3 Product Distribution in a Typical Distillation of Crude Petroleum					
Amount (% of volume)	Boiling point (°C)	Carbon atoms	Products		
1–2	<30	C ₁ -C ₄	Natural gas, methane, propane, butane, liquefied petroleum gas (LPG)		
15-30	30-200	C ₄ -C ₁₂	Petroleum ether (C _{5,6}), ligroin (C ₇), naphtha, straight-run gasoline ^{a}		
5-20	200-300	C ₁₂ -C ₁₅	Kerosene, heater oil		
10-40	300-400	C ₁₅ -C ₂₅	Gas oil, diesel fuel, lubricating oil, waxes, asphalt		
8-69	>400	>C ₂₅	Residual oil, paraffin waxes, asphalt (tar)		
	(Nonvolatiles)				

^aThis refers to gasoline straight from petroleum, without having been treated in any way.

Overall equation:

$$CH_3CH_2 - H + : \dot{C}I - \dot{C}I : \longrightarrow CH_3CH_2 - \dot{C}I : + H - \dot{C}I :$$
$$\Delta H^\circ = 101 + 58 - 84 - 103 = -28 \text{ kcal mol}^{-1}$$

Initiation:

$$: \underbrace{\dot{C}}_{\underline{C}} \xrightarrow{h\nu} 2: \underbrace{\ddot{C}}_{\underline{C}} \cdot \xrightarrow{h\nu} 2: \underbrace{\ddot{C}}_{\underline{C}} \cdot \xrightarrow{\Delta H^{\circ}} = +58 \text{ kcal mol}^{-1}$$

Propagation step1:

$$CH_3CH_2 \xrightarrow{\frown} H \xrightarrow{+} CH_3CH_2 \xrightarrow{\cdot} H \xrightarrow{-} CH_3CH_2 \xrightarrow{-} H \xrightarrow{-} H \xrightarrow{-} CH_3CH_2 \xrightarrow{-} H \xrightarrow{-} CH_3CH_3 \xrightarrow{-} CH_3 \xrightarrow{-} CH_3 \xrightarrow{-} C$$

Propagation step2:

Termination:

ation

$$\begin{aligned} & : \ddot{\Box} \stackrel{\land}{\cdot} \stackrel{\checkmark}{\cdot} \vdots \overset{\frown}{\Box} : \longrightarrow \operatorname{Cl}_2 \qquad \Delta H^\circ = -58 \text{ kcal mol}^{-1} \\ & \operatorname{CH_3CH_2} \stackrel{\land}{\cdot} \stackrel{\leftarrow}{\cdot} \vdots & : \longrightarrow \operatorname{CH_3CH_2} \overset{\leftarrow}{\Box} : \qquad \Delta H^\circ = -84 \text{ kcal mol}^{-1} \\ & \operatorname{CH_3CH_2} \stackrel{\land}{\cdot} \stackrel{\leftarrow}{+} \cdot \operatorname{CH_2CH_3} \longrightarrow \operatorname{CH_3CH_2CH_2CH_3} \qquad \Delta H^\circ = -88 \text{ kcal mol}^{-1} \end{aligned}$$

Other halogenations of methane

CH₃-X

Compare important ΔH° values:

 F2
 Cl2
 Br2
 I2
 HF
 HC1
 HBr
 HI
 F
 C1
 Br
 I

 38
 58
 46
 36
 136
 103
 87
 71
 110
 85
 70
 57

Initiation OK for all

Reactivity: $F_2 > Cl_2 \sim Br_2 > V_2$ Nope explodes good! Cl_2 faster than Br_2

Reaction	F	Cl	Br	Ι
Propagation step 1:				
$: \underbrace{\mathbf{X}}_{\mathbf{H}} + \operatorname{CH}_{4} \longrightarrow \cdot \operatorname{CH}_{3} + \operatorname{HX}_{\mathbf{H}}:$	-31 (-130)	+2 (+8)	+18 (+75)	+34 (+142)
Propagation step 2:				/
$\cdot \operatorname{CH}_3 + \operatorname{X}_2 \longrightarrow \operatorname{CH}_3 \overset{\cdots}{\underset{\leftarrow}{\operatorname{H}}} : + : \overset{\cdots}{\underset{\leftarrow}{\operatorname{H}}} \cdot$	-72 (-301)	-27 (-113)	-24 (-100)	-21 (-88)
Overall reaction:			/	
$CH_4 + X_2 \longrightarrow CH_3 \ddot{X} + H\ddot{X}$	-103 (-431)	-25 (-105)	-6 (-25)	+13 (+54)

Endothermic

Selectivity for different C-H bonds

 CH_3 CH_2 CH_3 CH_3 CH_3 $-C-CH_3$ prim, sec, tert J H V $CH_{3}CH_{2}CH_{3} \xrightarrow{Cl_{2}, hv} CH_{3}CH_{2}CH_{2}CH_{2}C1 + CH_{3}CHCH_{3}$ Statistical (expected) 3 : R-H (expected) Less (prim) More (sec) Found (25 ° C) : 43 : 57 Reactivity per H: 43/6 = 7.2 57/2 = 28.5

Secondary C-H is more reactive than primary C-H

What about tertiary C-H?

Result: Relative reactivity (selectivity) in chlorinations at 25 °C: *Tert : Sec : Prim* = $\sim 5 : 4 : 1$

Selectivity and other halogens $(CH_3)_3CH + F_2 \rightarrow FCH_2CH + (CH_3)_3CF = 9:1$ CH_3 statistical !

$(CH_3)_3CH + Br_2 \rightarrow (CH_3)_3CBr$ only !

Just to get a feel for the numbers...

	Table 3.6 Re			
	C-H bond	(25°C, gas)	Cl· (25°C, gas)	Br· (150°C, gas)
Primarv	CH ₃ –H	0.5	0.004	0.002
Primary, longer C-chain	RCH_2-H^a	1	1	1
Secondary	R ₂ CH-H	1.2	4	80
Tertiary	R ₃ C–H	1.4	5	1700
	^a For each halogen, reprimary C–H bond.	activities with four types of alka	ane C-H bonds are normalized	to the reactivity of the

Picture from Vollhardt & Schore

Selectivities vary extensively with the reagent employed, e.g., ICl, ROCl, R₂NBr, with temperature, and solvent.

Why is this important?

Halogenation converts nonfunctional alkanes into functionalized haloalkanes starting materials for a variety of subsequent transformations

The process has to be: safe, economic, selective, efficient