

Antoine-Laurent Lavoisier

Cycloalkanes + *isomers

CYCLOALKANES

Abundant in nature, especially in polycyclic frames: the steroid sex hormones

Testosterone

Estrone

CH₃

å

Regulate growth and function of reproductive organs; stimulate development of secondary sexual characteristics

Naming cycloalkanes

Molecular formula: $(CH_2)_n$ not C_nH_{2n+2} Named as cycloalkanes: cyclopropane, \triangle , cyclobutane, , etc.

When substituents: Cycloalkyl.

Monosubstituted cycloalkanes: carbon of attachment is defined as "C1":

Ethylcyclobutane (no # needed)

Larger stem controls:

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Disubstituted cycloalkanes:

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

- a. Lowest digit numbering
- b. Substituents go in alphabetical order

1-Ethyl-2-methylcyclohexane

E before m

1,2,4 not **1,3,4** 1-Bromo-2-chloro-4-methylcyclohexane

Let's look at stereoisomers in more detail

With two (or more) substituents, new type of isomerism:

Same side: cis Opposite sides: trans

Stereoisomers

CH₃ CH₃ *cis*-1,2-Dimethyl-cyclopropane

trans-1-Bromo-3-fluorocyclohexane

Definition of Stereoisomers

Same connectivity (not constitutional isomers), but differing arrangement in space.

Note: This definition includes all rotamers (anti, gauche, etc.).

However

Stereoisomers should be stable at room temperature. Rotamers interconvert rapidly by rotation, whereas *cis/trans* isomerization requires bond breaking.

Physical properties

higher boiling & melting points

higher density

↑ London interactions more rigid & symmetric cyclic systems Different melting & boiling T if odd or even # C

*sp*³-Carbon wants 109.5°

 Small rings (cyclopropane, cyclobutene)

- 2. Common rings (cyclopentane, -hexane, heptane)
- 3. Medium rings (8-12 C)
 4. Large rings (>12C)

Cyclopropane

Torsional strain and bond-angle strain make so that the molecule is less stable than expected

Cyclobutane: "Puckering" reduces eclipsing

Cyclopentane: Envelope Conformation

The (Almost) Unstrained Cyclohexane: A "Chair" Conformation

Newman projection along C-C bond

Chair

The cyclohexane alternative conformation (Boat) is strained

The boat form is a transition state in the dynamics of cyclohexane movement

Boat

...So it twists

But this is only part of its mobility. The most important movement is a "flip" from one chair form to another.

The Chair-Chair Flip Manifold

Resources from Vollhardt & Schore

Reaction coordinate to conformational interconversion of cyclohexane \longrightarrow

Monosubstituted Cyclohexanes $\Delta G^{\circ} \neq 0$

Conformational Analysis: the energetics of axial-equatorial substituents

Example: methylcyclohexane

Transannular strain

Gauche Less stable

Axial-Equatorial Conformers

ΔG° may be additive

Consider the dimethylcyclohexanes:

 $\Delta G^{\circ} = 0 \text{ kcal mol}^{-1}$

H

Equatorial

H

Axial SCH3

 $\Delta G^{\circ} = 0 \text{ kcal mol}^{-1}$

H₃C

Equatorial

1,1-Dimethylcyclohexane

H

CH₃ Axial

trans-1,4-Dimethylcyclohexane

The largest group often wins

Large substituents, such as *tert*-Bu, are said to "lock" a conformation.

Medium Rings (8-12-Membered) Suffer Transannular Strain

Bicyclic, fused, polycyclic, polyhedral alkanes

Bicyclo[2.2.1]heptane (norbornane)

Strained Hydrocarbons: What Is The Limit?

Exotic polyhedra: The five Platonic or Cosmic solids (Plato 350 BC)

There are two more: icosahedron (20 faces, water) and octahedron (8 faces, air)

Maier, 1978, tetra-*t*-Bu-tetrahedrane. Substituted C_4H_4

m.p. 135°C Strain: 130 kcal mol⁻¹

Eaton, 1964, cubane, C_8H_8

Paquette, 1982, dodecahedrane, $C_{20}H_{20}$, 12 cyclopentane faces m.p. 430°C Strain: 60 kcal mol⁻¹

m.p. 126°C Strain: 166 kcal mol⁻¹

STEREOISOMERS

Image and mirror image of limonene

"Handedness"

And now...

Enantiomers!!

Picture from Vollhardt & Schore

the second second second second

Most organic molecules owe their chirality to the presence of a stereocenter, usually a carbon with 4 different substituents: an asymmetric carbon.

If image and mirror image of a molecule are superimposable it is achiral. Quick test: presence of a mirror plane. Chiral molecules lack a mirror plane.

The various kinds of isomers

Enantiomers

X-ray crystallography

Polarimeter

Picture from <u>libretext</u>

Naming Enantiomers

Cahn-Ingold-Prelog *R*,*S*-Nomenclature

Label all substituents at stereocenter, starting at point of attachment, according to the sequence rules in order of decreasing priority: **a**, **b**, **c**, **d** (note color scheme). Face the molecule, looking down C-d bond:

a, b, c clockwise: R

a, b, c counterclockwise: S

The Sequence Rules 1. Order by atomic number, i.e. H = 1, lowest.

Exception: lone pair, # "zero". E.g., amines:

2. If same priority at first atom: Go to first point of difference.

3. Multiple bonds: Add double or triple representations of atoms at the respective other end of the multiple bond.

How do we name them now?

Enough?

Diastereoisomers

Diastereomers are stereoisomers that are not related as image & mirror-image and they have 2 stereocenters

This creates 2 enantiomers pairs **RR | SS** and **RS | SR** For a total of 4 diastereoisomers

Diastereoisomers

Since they are not related as image & mirror-image, they have different:

- physical and chemical properties
- steric interactions and energies
- melting and boiling points
- densities
- specific rotations

They can be separated by fractional distillation, crystallization, or chromatography.

Cyclic Cis And Trans Isomers Are Diastereomers!

What about 3 stereocenters?

Generally, a compound with n stereocenters can have a maximum of 2^n stereoisomers.

Enantiomer recognition in nature

Receptor sites in enzymes: the "active site"

