

Antoine-Laurent Lavoisier

Cycloalkanes + *isomers

CYCLOALKANES

Abundant in nature, especially in polycyclic frames: the steroid sex hormones

Testosterone

Estrone

Regulate growth and function of reproductive organs; stimulate development of secondary sexual characteristics

Naming cycloalkanes

Molecular formula: $\left(\mathrm{CH}_{2}\right)_{n}$ not $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
Named as cycloalkanes: cyclopropane, \triangle, cyclobutane, \square, etc.
When substituents: Cycloalkyl.
Monosubstituted cycloalkanes: carbon of attachment is defined as "C1":

Larger stem controls:

Disubstituted cycloalkanes:

a. Lowest digit numbering
b. Substituents go in alphabetical order

1- thy -2-methylcyclohexane 1,2,4 not $1,3,4$

1-Bromo-2-chloro-4-
cyclohexane

Let's look at stereoisomers in more detail

With two (or more) substituents, new type of isomerism:
$\left.\begin{array}{l}\text { Same side: cis } \\ \text { Opposite sides: trans }\end{array}\right\}$ Stereoisomers

cis-1,2-Dimethylcyclopropane

trans-1-Bromo-3-
fluorocyclohexane

Definition of Stereoisomers

Same connectivity (not constitutional isomers), but differing arrangement in space.

Note: This definition includes all rotamers (anti, gauche, etc.).

However

Stereoisomers should be stable at room temperature. Rotamers interconvert rapidly by rotation, whereas cis/trans isomerization requires bond breaking.

Physical properties

higher boiling \& melting points

higher density

\uparrow London interactions more rigid \& symmetric cyclic systems

Different melting \& boiling T if odd or even \# C

Ring Strain

$s p^{3}$-Carbon wants 109.5°

1. Small rings (cyclopropane, cyclobutene)
2. Common rings (cyclopentane, -hexane, heptane)
3. Medium rings (8-12 C)
4. Large rings (>12C)

Cyclopropane

Torsional strain and bond-angle strain make so that the molecule is less stable than expected

Cyclobutane: "Puckering" reduces eclipsing

Cyclopentane: Envelope Conformation

The (Almost) Unstrained Cyclohexane: A "Chair" Conformation

Newman projection along C-C bond

The cyclohexane alternative conformation (Boat) is strained

The boat form is a transition state in the dynamics of cyclohexane movement

Boat

...So it twists

But this is only part of its mobility.
The most important movement is a "flip" from one chair form to another.

The Chair-Chair Flip Manifold

Reaction coordinate to conformational interconversion of cyclohexane \longrightarrow

Monosubstituted Cyclohexanes

$$
\Delta G^{\circ} \neq 0
$$

Conformational Analysis: the energetics of axial-equatorial substituents

Example: methylcyclohexane

Anti
More stable

Gauche
Less stable

Transannular strain

Axial-Equatorial Conformers

ΔG° may be additive

Consider the dimethylcyclohexanes:

1,1-Dimethylcyclohexane

But:

trans-1,4-
Dimethylcyclohexane

$$
\left.\Delta G^{\circ}=+3.4 \mathrm{kcal} \mathrm{~mol}^{-1} \text { (I.e. } 2 \times 1.7 \mathrm{kcal} \mathrm{~mol}^{-1}\right)
$$

The largest group often wins

Large substituents, such as tert-Bu, are said to "lock" a conformation.

Medium Rings (8-12-Membered) Suffer Transannular Strain

Ring size $\left(\mathbf{C}_{n}\right)$	Total strain	Transannular
3	27.6 (115)	
4	26.3 (110)	Q
5	6.5 (27)	114.7° -
6	0.1 (0.4)	-
7	6.4 (27))
8	10.0 (42)	$\xrightarrow{+1}$
9	12.9 (54)	\bigcirc O
10	14.0 (59)	Eclipsing
11	11.0 (46)	Ring strain
12	2.4 (10)	
14	0.0 (0.0)	\triangle Cyclodecane

Bicyclic, fused, polycyclic, polyhedral alkanes

Bicyclo[2.2.1]heptane
(norbornane)

Bicyclo[4.4.0]decane (decalin), trans and cis

Strained Hydrocarbons: What Is The Limit?

Exotic polyhedra: The five Platonic or Cosmic solids (Plato 350 BC)

Tetrahedron (4 faces, fire)

Cube
(6 faces, earth)

Dodecahedron (12 faces, "ether")

There are two more: icosahedron (20 faces, water) and octahedron (8 faces, air)

Maier, 1978, tetra-t-Bu-tetrahedrane. Substituted $\mathrm{C}_{4} \mathrm{H}_{4}$ m.p. $135^{\circ} \mathrm{C}$ Strain:
$130 \mathrm{kcal} \mathrm{mol}^{-1}$

Eaton, 1964, cubane, $\mathrm{C}_{8} \mathrm{H}_{8}$

Paquette, 1982, dodecahedrane, $\mathrm{C}_{20} \mathrm{H}_{20}$, 12 cyclopentane faces m.p. $430^{\circ} \mathrm{C}$

Strain: $60 \mathrm{kcal} \mathrm{mol}^{-1}$

> m.p. $126^{\circ} \mathrm{C}$
> Strain: $166 \mathrm{kcal} \mathrm{mol}^{-1}$

STEREOISOMERS

Image and mirror image of limonene

Enantiomers!!

Stereocenters

Most organic molecules owe their chirality to the presence of a stereocenter, usually a carbon with 4 different substituents: an asymmetric carbon.

If image and mirror image of a molecule are superimposable it is achiral. Quick test: presence of a mirror plane. Chiral molecules lack a mirror plane.

The various kinds of isomers

Enantiomers

X-ray crystallography
Polarimeter

Naming Enantiomers

Cahn-Ingold-Prelog R, S-Nomenclature
Label all substituents at stereocenter, starting at point of attachment, according to the sequence rules in order of decreasing priority: a, b, c, d (note color scheme). Face the molecule, looking down C-d bond:

a, b, c clockwise: R
a, b, c counterclockwise: S

The Sequence Rules

1. Order by atomic number, i.e. $\mathrm{H}=1$, lowest.

Exception: lone pair, \# "zero". E.g., amines:

2. If same priority at first atom: Go to first point of difference.

3. Multiple bonds: Add double or triple representations of atoms at the respective other end of the multiple bond.

is treated as

is treated as

is treated as

is treated as

How do we name them now?

Enough?

Diastereoisomers

Diastereomers are stereoisomers that are not related as image \& mirror-image and they have 2 stereocenters

This creates 2 enantiomers pairs RR | SS and RS | SR
For a total of 4 diastereoisomers

Diastereoisomers

Since they are not related as image \& mirror-image, they have different:

- physical and chemical properties
- steric interactions and energies
- melting and boiling points
- densities
- specific rotations

They can be separated by fractional distillation, crystallization, or chromatography.

Cyclic Cis And Trans Isomers Are Diastereomers!

What about 3 stereocenters?

Generally, a compound with n stereocenters can have a maximum of 2^{n} stereoisomers.

Enantiomer recognition in nature

Receptor sites in enzymes: the "active site"

