Divi	sibility	y Theor	y in the	Integers
			9 7	
A SET HAS TH	E CLOSU	2E PROPERTY	UNDER A PAI	zticular operation lf
THE RESULT C	F THE C	PERATION is	S ALWAYS AN	ELEMENT IN THE SET.
IF A SET HA	S THE C	LOSURE PROPE	RTY UNDER A	A PARTICULAR OPERATION,
THEN WE SAY		SET is (CLOSED UNDEF	2 THE OPERATION.
FOR INSTANCE,	T#E :	SET { 1,2,	3,45 SN	is not closed under
THE USUAL AI	Dition	BECAUSE 2	+3 = 5 AND	5 is NOT in 21,2,3,4 g.
Similarly, T	HE SET	N OF AL	L POSITIVE	INTEGERS IS NOT
CLOSED UNDER	2 THE (JSUAL SUBS	TRACTION SI	NCE 2-3 = -1 AND
-1∉N. Ho	WEVER, L	VE OBSERVE	IN is CL	osed UNDER THE USUAL
ADDITION AND	MULTI PL	ication Sin	ice Given	ANY TWO INTEGERS 2,6
WE HAVE	94P E	, N ANI) a.b e	N .

LET	- Z	DENOTE	THE	SET	OF ALL	INTEGE	RS. NOTICE
Æ	is	CLOSED ()NDER	THE	USUAL 1	ADDITION	, SUBSTRACTION
AND	MULT	iplication.	·⊤#A°	r îs,	GIVEN	ANY TW	O INTEGERS 2,5
WE	HAVE	949 6	s Z	, a	- b E	Z AND	∂.b ∈ ₹.
Hou	IEVER	7 is	NOT	CLOS	ED UND	er the	USUAL DIVISION
OF	INTE	GERS SIN	JCE,	FOR	ÎNSTAN CE	, <u>15</u>	\$ Z.
ALTE	HOVGH	7 HAS	NOT	THE	CLOSURE	PROPERTY	UNDER THE
Divi	Sion	WE OB	SEFVE	FOR	SOME	2,66	Z THE NUMBER
9	e Z	. For	INSTAI	JCE,	12 ,	12 , 12	2 ARE INTEGERS.
6				,	4	3 ' -6	2
T H F S	S REMI	ARK ALLOW	s us	TO .	INTRODUC	ETHEN	JEXT DEFINITION:

DEFINITION: GIVEN 2, b E Z, WE SAY THAT 2 DIVIDES 6
IF THERE EXISTS AN INTEGER CEZ SUCH THAT D= D.C.
IN THIS CASE, WE WRITE 2/6.
h = h = 0
WE NEXT GIVE DOME EXAMINED: 20 Cince Theore Evice $0 \in \mathbb{Z}$ Such that $0 = 2.0$
15 -90 SINCE THERE EXISTS VEZ SUCH THAT -90. IS (A)
14 X 21 SINCE THERE IS NO INTEGER & CULL HAT 21 - 146
0 0 Since 0 = 0.0
THE DIVISORS OF 12 ARE ±1, ±2, ±3, ±4, ±6, ±12.
<u>Lxercises</u>
(1) GIVEN DIDIC EZ, PROVE THE FOLLOWING DIVISIBILITY
PROPERTIES:
(i) à divides O FOR EVERY à EZ.
GIVEN ANY INTEGER 2, WE OBSERVE THERE EXISTS OF Z
SUCH THAT $O = 2.0$. THEN, $2/0.$
(ii) 0 0 iff 0 = 0
WE ALREADY OBSERVED THAT 0/0. SUPPOSE NOW THAT 0/0.
THEN, THERE EXISTS REZ SUCH THAT D = O.R. THIS
SHOWS THAT 2=0.
(LUL) (1 0 AND -110 FOR EVERY DEZ.
GIVEN ANY INTEGER OF THE THERE EXIST OF OF
DUCH THAT $3 = 1.3$ AND $3 = (-1).(-3)$. THEN, 113 AND -113.

(iv) $\partial |1 \text{ or } \partial |-1 \text{ iff } \partial = 1 \text{ or } \partial = -1$. SUPPOSE FIRST THAT $\partial |1 \text{ . THEN, } \text{ THERE EXISTS RE Z SUCH}$ THAT $1 = \partial \cdot R$. TAKING ADSOLUTE VALUE, WE GET $1 = |\partial |.|k|$. NOTE THAT $|\partial |, |k| \in \mathbb{N} \cdot \mathbb{IF}$ $|\partial |>1$ THEN $1 = |\partial |.|k| > 1$ WHICH SHOWS THAT $|\partial | = 1$. THEN, $\partial \in (-1, 1)$. SIMILARLY, IF $\partial |-1$ THEN $-1 = \partial \cdot k^{1}$ FOR SOME $k \in \mathbb{Z}$. TAKING ADSOLUTE VALUE, WE GET $1 = |\partial |.|k|$ WHICH IMPLIES $|\partial | = 1$. THUS, $\partial \in (1, -1)$. CONVERSELY, \mathbb{IF} $\partial = 1$ of $\partial = -1$, \mathbb{IT} is CLEAR THAT $\partial [1 \text{ AND } \partial] - 1$. THE CLAIM FOLLOWS.

(V) 2 2 FOR ALL 2 E Z

GIVEN $\partial \in \mathbb{Z}$, NOTICE THERE EXISTS $1 \in \mathbb{Z}$ SUCH THAT $\partial = 1.0$. THIS SHOWS $\partial [\partial]$.

(VI) $\partial | b | \partial b | \partial iff \partial b | \partial b | \partial iff \partial b | \partial b$

b= a.h AND C= b.R. THEN, WE OBSERVE THERE EXISTS MEGZ SUCH THAT C= 6R= (ah)R= a(hR) WHICH SHOWS THAT alc. (Viii) alb iff al-b iff -alb iff -al-b WE WILL PROVE THAT 216 iff 2-6. THE OTHER PROOPS ARE SIMILAR AND THEREFORE LEFT AS AN EXERCISE. IF 216 THEN 6=2.R FOR SOME REZ. THEN, WE CAN WRITE -b= D. (-b) AND SINCE - b & & WE HAVE 2)-b. CONVERSELY; IF 21-6 THEN -6=2.4 FOR SOME HEZ. SO, b = (-1).(-b) = (-1). a.h = a.(-h) with $-h \in \mathbb{Z}$. Then, a/b. (ix) IF a, b EN AND alb THEN a 4b. LET 2, DEN. IF 210 THEN 6= 2. R FOR SOME REZ. SINCE DIDEN, WE HAVE REN. THEN R 21. THIS SHOWS b= 2. k > 2. THE CLAIM FOLLOWS. (X) IF all AND all THEN a btc SUPPOSE THAT 216 AND 21C. THEN THERE EXISTS R, HEZ SUCH THAT b= DR AND C= Dh. SO, THERE EXISTS Lthez SUCH THAT b+C = a k+ah = a (k+h) which means a b+C. (XI) IF all THEN all FOR EVERY CEZ. IF alb THEN THERE EXISTS REZ SUCH THAT b= aA. THEREFORE, FOR EVERY CEZ, bC = 2 kC = 2 (kC). SINCE $bc \in \mathbb{Z}$ WE HAVE 2 bc.

(Xii) IF a b+c AND a b THEN a) c SUPPOSE THAT a b+c AND a b. THEN, THERE EXIST R, h $\in \mathbb{Z}$ Such THAT b+c= R.a AND b= a.h. Notice THAT C = (b+c) - b = R.a - a.h = a.(R-h) AND $R-h \in \mathbb{Z}$. THUS, a c.

(XIII) 216 AND 21C THEN 316-C. IF 26 AND 21C THEN 6=2k AND C=2h FOR SOME $k,h \in \mathbb{Z}$. THEN, 6-C=2k-2h = 2(k-h) with k-hez. THIS SHOWS 26-C.

(2) FIND ALL VALUES OF DEZ SUCH THAT D+1/2D²+9. LET DEZ SUCH THAT D+1/2D²+9. BY (V), D+1/D+1 AND BY (Xi), D+1/(D+1).C FOR EVERY C EZ. IN PARTICULAR, TAKING C= 2D-2 EZ WE HAVE D+1/(D+1)(DD-2) = 2D²-2. THEREFORE, D+1/2D²+9 AND D+1/2D²-2. BY (Xiii) WE HAVE D+1/(2D²+9) - (2D²-2). THAT is, D+1/19. NOTE THAT THE ONLY DIVISORS OF 11 ARE ± 1 , ± 11 . THEN, WE GET D+1 E ± 1 , ± 11 , ± 11 . ± 11 . ± 11 . ± 11 . UNE HAVE D+1/(2D²+9) - (2D²-2). ± 1 , ± 11 . ± 11 . ± 11 . THEN, WE GET D+1 E ± 1 , ± 11 , ± 11 . ± 11 . ± 11 . THEN, WE GET D+1 E ± 1 , ± 11 , ± 11 . ± 11 . THEN, WE GET D+1 E ± 1 , ± 11 , ± 11 . THEN, WE GET D+1 E ± 1 , ± 11 , ± 11 . THEN, WE TF D=0 WE GET 1/9 WHICH MEANS DE 4. TF D=0 WE GET -1/17 WHICH IS TRUE. TF D=0 WE GET -1/17 WHICH IS TRUE. TF D=10 WE GET -11/297 WHICH IS TRUE AS (11.17=207). TF D=-12 WE GET -11/297 WHICH IS TRUE AS (-11).(-27)=277. THEREFORE, $4 = \frac{2}{2} = \frac$

(3) FIND ALL VALUES OF ME N SUCH THAT: 3M-1 M+7 (i) LET ME N SUCH THAT 3M-1 M+7. NOTE THAT 3M-1 3m-1 AND 3M-1/3(M+7) = 3M+21. THEN, 3M-1/(3M+21) - (3M-1) = 20NOTE THAT THE POSITIVE DIVISORS OF 20 ARE 1,2,4,5,10,20. $T \# \in \mathbb{N}_1 \quad \exists m - 1 \in \{1, 2, 4, 5, 10, 20\} \quad \le 0, \quad \exists m \in \{2, 3, 5, 6, 11, 21\}.$ NOTE THAT 3 M E 2 3, 6, 21 Y SINCE ME N. THIS SHOWS ME of 1, 2, 74. IF M=1 WE GET 2/8 WHICH IS TRUE. IF M=2 WE GET 5/9 WHICH IS NOT TRUE. IF M=7 WE GET 20 14 WHICH IS NOT TRUE. WE THEREFORE HAVE $(\ddot{u}) \ m-2 \ m^{3}-8$ LET MEIN SUCH THAT M-2 M3-8. NOTE WE CAN WRITE $M^{3}-8 = (M-2)(M^{2}+2M+4)$. SINCE MEN AND N FS CLOSED UNDER THE USUAL ADDITION AND MULTIPLICATION, WE HAVE M2+2M+4 EN THIS MEANS M-2/M3-8 FOR EVERY MEN. THEN, $2MEN: M-2M^3-89 = N$. (4) LET 216 EZ. (i) SHOW THAT 2-6 2m-b" FOR EVERY MEN. WE PROCEED BY INDUCTION ON MEN. LET S BE THE SET DEFINED BY S= (MEN: 2-6 2M-6M &. OBSERVE THAT 1ES SINCE 2-6 21-61 = 2-6. SUPPOSE NEXT LES FOR

Some h>1. THEN 2-6 2h-6h. THIS MEANS THERE EXISTS

TO SHOW THAT 8 2-1. NOTE THAT $\partial^2 - 1 = (\partial + 1) (\partial - 1) = (2k+2) 2k = 2(k+1) 2k = 4k(k+1).$ IN ADDITION, 2 k(k+1) SINCE EITHER & OR k+1 iS EVEN. IT FOLLOWS FROM THE ABOVE COMMENTS THAT 8/2-1. Assume NOW THAT $2^{n+2} | \partial^{2^n} - 1$ For some he N; h>1. THEN; THERE EXISTS $l \in \mathbb{Z}$ SUCH THAT $\partial^2 - 1 = 2^{n}$. NEXT WE OBSERVE $2^{h+1} = 2^{h} \cdot 2 = 2^{h} \cdot 2^{h} = 2^{h} \cdot 2^{h} \cdot 2^{h} = 2^{h} \cdot 2^{h} \cdot 2^{h} = 2^{h} \cdot 2^{h} \cdot 2^{h} \cdot 2^{h} \cdot 2^{h} = 2^{h} \cdot 2^$ WE NEXT PROVE THAT 2 2 4 + 1 FOR EVERY MEN. RECALL THAT 2 is odd. So, 2=2k+1 FOR SOME REZ. LET $S = \{ M \in IN : 2 \mid 2^{M} + 1 \}$. OBSERVE THAT 16 S SINCE $a^{1} + 1 = a + 1 = (2k+1) + 1 = 2k+2 = 2(k+1)$ AND $k+1 \in \mathbb{Z}$. GIVEN HEIN, H>1, SUPPOSE HES. THEN, THERE EXISTS $q \in \mathbb{Z}$ Such THAT $a^{h} + 1 = 2q$. Hence, we notice $a^{h+1} + 1 = a \cdot a^{h} + 1 = a (2q-1) + 1$ = (22+1)(29-1) + 1= 4kq - 2k + 2q - 1 + 1 $= 2(2kq - k+q) \quad \text{where } 2kq - k+q \mathcal{E}.$ THES SHOWS THAT $2|2^{k+1}+1$. We therefore HAVE S = IN. IN PARTICULAR, $2^{h} \in S$. THIS MEANS THAT $2 | \partial^{2^{h}} + 1$. So there exists $M \in \mathbb{Z}$ such that $\partial^{2^{h}} + 1 = 2M$. HENCE, IT FOLLOWS FROM THE ABOVE COMMENTS,

RESULT FOLLOWS FROM THE PRINCIPLE OF INDUCTION. (6) LET ME NULOY. (i) PROVE THAT, FOR EVERY OSKEM THE NUMBER (M) IS A NATURAL NUMBER. (ii) SHOW THAT MAD DIVIDES $\begin{pmatrix} 2M \\ M \end{pmatrix}$. (i) LET $S = \{ M \in \mathbb{N} : (M \in \mathbb{N} , For ALL O \leq R \leq M \}$ WE FIRST SHOW THAT 1 CS. TO DO THIS, WE NEED TO PROVE THAT $\binom{1}{k} \in \mathbb{N}$ FOR ALL $0 \leq k \leq 1$. IF k = 0, NOTE $\binom{1}{0} = 1! = 1$ while IF R=1 THEN $\binom{1}{1} = 1! = 1$. THIS SHOWS THAT $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{N}$ AND $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{N}$. So, $1 \in S$. GIVEN NEN, MD1, LET'S ASSUME (h) EN FOR EVERY OEREN. WE WILL PROVE THAT h+1 ES. SO, WE NEED TO SHOW THAT $\begin{pmatrix} h+1 \\ k \end{pmatrix} \in N$ FOR EVERY $0 \le k \le h+1$. NOTE THAT $\begin{pmatrix} h+1 \\ 0 \end{pmatrix} = \begin{pmatrix} h+1 \\ h+1 \end{pmatrix} = 1 \in N$. IT REMAINS TO PROVE THAT $\begin{pmatrix} h+1 \\ k \end{pmatrix} \in N$ FOR ALL $1 \le k \le h$. BY PASCALS RULE WE NOTICE $\begin{pmatrix} h+1 \\ k \end{pmatrix} = \begin{pmatrix} h \\ k \end{pmatrix} + \begin{pmatrix} h \\ k-1 \end{pmatrix}$. NOTE ALSO THAT O & R-1 & h-1 & h. THEREFORE, BY THE INDUCTION HYPOTHESIS THE NUMBERS $\begin{pmatrix} h \\ k \end{pmatrix} \in N$ AND $\begin{pmatrix} h \\ k - i \end{pmatrix} \in N$. HENCE, AS IN is CLOSED UNDER THE ADDITION, WE

(7) PROVE THAT 56 | 13^{2M} + 28 m² - 84M - 1 FOR ALL MEN. WE WILL PROCEED BY INDUCTION. LET S BE THE SET S = 1 MEIN: 56 132 + 28 M2 - 84 M - 1 4. NOTE THAT $13^2 + 28 - 84 - 1 = 112 = 56.2$ WHICH SHOWS THAT $1 \in 5$. ASSUME NOW THAT NES FOR SAME HEIN, H>1. 74EN, THERE EXISTS REN SUCH THAT 1324 + 2842 - 844-1 = 56 R. WE WILL SHOW NOW THAT N+1 ES. TO DO THIS, NOTICE $(13^{2(h+1)} + 28(h+1)^2 - 84(h+1) - 1 = (13^2 + 28(h^2 + 2h + 1) - 84h - 84 - 1)$ $= 169 \cdot 13^{2h} + 28(2h+1) + (28h^2 - 84h-1) - 84$ $= 169.13^{2h} + 56h + 28 + 56k - 13^{2h} - 84$ $= 168.13^{2h} + 56h + 56k - 56$ $= 56(3.13^{2h} + h + k - 1)$ SINCE REZ, HEN, THE NUMBER 3.132 + H+R-1 EZ. THEN, 56 (3 +28(h+1)2 - 84(h+1)-1 AND SO, h+1 E S. THEREFORE, BY THE PRINCIPLE OF INDUCTION, THE SET S=N.

THEOREM	DIVISION ALGORITHM) GIVEN THTEGERS & AND b
WITH bfo,	THERE EXIST UNIQUE INTEGERS of AND T SUCH THAT
	$\partial = 9.0 + 7$ AND $O \leq 7 \leq 161$.
THE INTEGERS	9 AND T ARE CALLED, RESPECTIVELY, THE QUOTIENT
AND KEMAINDER	IN THE DIVISION OF & BY U.

(8) PROVE THAT IF 2 AND & ARE INTEGERS, WITH 6>0, THEN THERE EXIST UNIQUE INTEGERS 9 AND 1 SATISFYING 2=96+1 WHERE $2b \leq r \leq 3b$. BY THE DIVISION ALGORITHM THEOREM, GIVEN 2, b =0, THERE EXIST UNIQUE INTEGERS 9' AND 1' SUCH THAT D= g'b+r' WITH OF ML D. THEN, WE OBSERVE $\partial = q'b+t' = q'b+t'+2b-2b = (q'-2)b + (t'+2b)$ LET q := q'-2 AND T := T'+2b. NOTICE q_1T ARE UNIQUE SINCE 7', I' ARE UNIQUE. MOREOVER, 2 = 3 b + 1 AND SINCE 0 E F' L b THEN 26 E F' + 26 L 35 (9) (1) SHOW THAT THE SQUARE OF ANY INTEGER IS EITHER OF THE FORM 3R OR 3R+1, FOR SOME REZ. (ii) PROVE THAT 322-1 IS NOT A PERFECT SQUARE. (i) LET 2 E Z. BY THE DIVISION ALGORITHM THEOREM, THERE EXIST UNIQUE INTEGERS 9, F SUCH THAT D= 39+F WITH FEZON124. $THEN_{1} \quad \partial^{2} = (39+17)^{2} = 3^{2} q^{2} + 2 3 q \cdot \Gamma + \Gamma^{2} = 3 (3q^{2} + 2qr) + \Gamma^{2}.$ IF $\Gamma = 0$ THEN $a^2 = 3k$ with $k = 33^2 \in \mathbb{Z}$. IF $\Gamma = 1$ THEN $\partial^2 = 3k+1$ with $k = 33^2+22 \in \mathbb{Z}$.

IF $\Gamma=2$ THEN $2^2 = 3R+1$ with $k:= 33^2+49+1 \in \mathbb{Z}$. (ii) SUPPOSE THAT 32^2-1 is a perfect square. Then, There Exists $M \in \mathbb{Z}$ such that $32^2-1 = M^2$. Notice, $M^2 = 32^2-1 = 32^2-1+3-3 = 3(2^2-1)+2$ WHICH MEANS, BY THE DIVISION ALGORITHM THEOREM, THAT M^2 HAS REMAINDER 2 in the DIVISION BY 3. OBSERVE THIS CONTRADICTS (i) SINCE THE SQUARE OF ANY INTEGER HAS EITHER REMAINDER

O OR 1 IN THE DIVISION BY 3. THEREFORE, 322-1 IS NOT A PERFECT SQUARE.

(10) GIVEN $a_1 b \in \mathbb{Z}$ with $b \neq 0$, prove there exist unique INTEGERS q and r that satisfy $a_2 = bq + r$ where $-1/2 |b| \leq r \leq 1/2 |b|$.

BY THE DIVISION ALGORITHM THEOREM, THERE EXIST UNIQUE 91, 162 SUCH THAT 2= bg'+1' WHERE 041'4161.

 $\begin{array}{c} \label{eq:linear_linear$

(1	1) 1	R	01	ie	٦	L H	A٦	-	N	0	i	N'1	E	5E	R	i	2	Ŧŀ	ŀ€	F	-ol	10	wi	NG	<	520	ίνĘ,	N	£.	is
A		P	Eb	٢F	:Ec	T		SG	າ ໄປ	IRE	Ξ:			11	۱ '	11-	1,	11	11	, 1	11	11	,	-							
Lŧ		T	9	LN	1	BE	5	τ	4 8	-	M		₽₩		NC	MB)EP	۲	0	P	S	ùC.	H	S	EQU	JEN	CE	· .	NC	TE	
2	1	1 =	1	1	Ę	1	1 +	- 10	0																						
5	9	L =	1.	11	1 =	/	1+	10	> 4	- 10	,2																				
2	3) =	1.	11	11 =	-	1.	+ 1.	- 0	. 1<	2 ²	+ (10	3																	
Q	ц	=	11	11	11 =		1+	- 10) †	- 10	2.	- 14	2 ³	4	10	4															
Se	>		ÎN		Gei	NEI	ZAL	-	1	3	M				\sim		10 10	-	с.	Ŧ	ior	-	M	7	2	WE	5	ъB	Sŧ	RVE	
				M		k							M	þ	-="								N	1	k	2					
9	M	1=	h		_ (0)	=	1	+	10) -	ł	2 h:	=2	0'		-	(11	+	10	00	k:	> - 2	10		•	5	îΛ	ICE	
R	2	2		•	THE	5	M	JNI	3E	R	k	= 2	M	k	k D	-2	E	, >	N	1	S	0	1	6) M =	1	00	2+	-11	1 F	DPL
Sa	+c	٦€	k		e 7	ŧ.		T	He	-N	,	k K	2= IM	2 =		4	()	25	k-	+ 2	-)	4	3	F	-OR		m z	29	2.		
I	F		M	=	1	1	ĉ) N	۱=	11			4.	2	+	3	•	Т	He	RE	Fo	RE	31		For	2 6	EVE	RY		MEN	J,
3	N	1 =		4.	. g	m	ł	3		F) R	_	50	ЭМ	E		9	М	E	Æ.		Pe	' 37		ТĄ	E	Dí	VIS	510	วก	/
Al		Gor	25.	тH	M	7	TH	ΞO	RE	Μ,		ç	JN	\	H	AS	·	Rŧ	EM	Aîn	DE	R	' 3	,	ÍN	1 7	HE	D	-îu	(rsi o	λ
B	4	L	f		Fo	R	E	VE	RY		M	C	N	4	Ηe	τN α	Æ	1	Bγ	ł	[9	i) (ì)	1	a	n	ĩs	N	10-	r A	,
P	E	RF	ΕC	-17	-	Sa	عدا	4R	ਂ ਓ,									'						/							
																													-		
(1:	Ľ) -	Ŧŧ	łŦ	5	RE	ΞM	Ain	ΙŒ	R		10	J	ΤĦ	ε]	٦ <u>ر</u>	٧î	Sîq	N		0	F	A	N	İN	TE	Ge	EC.	2 8	
P	»\]	B		Ē	Q)A(S		5	•	P	=1	10	>	-	ΓH	£	F	٤E	MA	îNi	DE	R						
(i))	ÌN	ງ -	THÉ	5	Di	V[·	510	ON		0	-	ć	Э,	~	ે ગુ	99	4	11	1		Bγ	1	18	3					
BY		41	45		D	si J (.Sr	On	2	AL	30	P1	TH	Μ		11	ŧ	OF	EI	1	r	W	<u>(</u>)	K	NOU	ს ს	TH	εb	ε	E	XiS7
ÛN	Jl	QU	E			4	7	E	F	;	-	50	Сŀ	ł	7	H1	1 T	-	J	=	180	7	+ 0	5	-	761	εN		-		
6	y 2		3	9	. +	11	=		(1	8	7-	+5)1		-	3	((8	9.	+5)	-	- 1	11							

= 18.1892+2.1895+52-3187-3.5+11

By THE DIVISION ALGORITHM THEOREM, THERE EXIST UNIQUE $q_{11}'' \in \mathbb{Z}$ SUCH THAT $a_{-}^2 - a_{+} + 1 = 18 q_{+}' + r'$ with $o \leq r' \leq 1q$. THEREFORE, $q_{12}' = 18 q_{-}^2 + 7q + 1$ AND r' = 3.

(ii) IN THE DIVISION OF 2 By 3. BY THE DIVISION ALGORITHM THEOREM, WE KNOW THERE EXIST UNIQUE $q \in \mathbb{Z}$ SUCH THAT 2 = 18q + 5. THEN 2 = 18q + 5 = 18q + 5 = 18q + 3 + 2 = 3(6q + 1) + 2SINCE $6q + 1 \in \mathbb{Z}$ AND $0 \perp 2 \perp 3$, By THE ALGORITHM DIVISION THEOREM, THE DESIDED REMAINDER is 2.

(iii) IN THE DIVISION OF 1-32 BY 27

BY THE DIVISION ALGORITHM THEOREM, WE KNOW THERE EXIST

UNIQUE $q \in \mathbb{Z}$ SUCH THAT D = 189 + 5. THEN

1 - 32 = 1 - 3(187+5) = 1 - 547 - 15 = -547 - 14= 27.(-2)q - 14 = 27.(-2)q + 27.(-1) + 13 = 27.(-2q-1) + 13

WE THUS HAVE THE DESIRED REMAINDER IS 13 SINCE -29-1 E Z AND OL 13 4 27.

THIS SHOWS THE REMAINDER OF 2 IN THE DIVISION BY 31 is 8. (iii) LET REN. IF 31/2R-39, FIND THE REMAINDER IN THE DIVISION OF R BY 5. BY THE ALGORITHM DIVISION THEOREM, THERE EXIST UNIQUE 9, FEIN SUCH THAT R= 59+F WITH $T \in \{0, 1, 2, 3, 4, 4\}$. By (i), THERE EXISTS $M \in \mathbb{Z}$ SUCH THAT $2^{59} = 31. M + 1.$ THEN, $2^{8} - 39 = 2 - 39 = 2^{7} (31 M + 1) - 39$ $= 31.2^{\circ}.m + 2^{\circ} - 39$ = 31 (2^{\centerminet}.m - 1) + (2^{\centerminet}-8) SINCE 31 2 - 39 WE HAVE 2 - 8 = 0 THIS SHOWS THAT F= 3. (iv) FIND THE REMAINDER IN THE DIVISION OF 43. 2^{163} + 11. 5^{221} + 61 999 B1 31. NOTE THAT 61 = 2.31 - 1 = 31.2 + (-1). THEN, BY THE BINOMIAL THEOREM, $61 = [31.2 + (-1)] = \sum_{k=0}^{999} (999) (31.2) (-1)$ $= \sum_{k=0}^{999} (999) (31.2) (-1)$ $= \sum_{k=0}^{999} (999) (21.2) (-1)$ $= \sum_{k=0}^{999} (999) (21.2) (-1)$

