The Greatest Common Divisor (gcd)

IF 2 AND 6 ARE ARBITRARY INTEGERS, THEN AN INTEGER of is SAID TO BE A COMMON DIVISOR OF 2 AND 6 IF BOTH d/2 AND d/6. NOTE THAT 1 is A DIVISOR OF EVERY INTEGER. SO, THE SET OF THEIR POSITIVE COMMON DIVISORS IS NONEMPTY. WE NOW OBSERVE IF 2=60 THE SET OF POSITIVE COMMON DIVISORS OF 2 AND 6 IS INFINITE AS EVERY INTEGER SERVES AS A COMMON DIVISOR OF 2 AND 6. HOWEVER, WHEN AT LEAST ONE OF 2 AND 6 IS DIFFERENT FROM 0, THERE ARE ONLY A FINITE NUMBER OF POSITIVE COMMON DIVISORS. AMONG THESE NUMBERS, THERE IS A LARGEST ONE, CALLED THE GREATEST COMMON DIVISOR (9 cd) OF 2 AND 6.

DEFINITION: LET 216 GZ, NOT BOTH ZERO. THE GREATEST COMMON Divisor OF 2 AND b, DENOTED BY gcd (21b) OF (21b), is THE POSITIVE INTEGER & SATISFYING THE FOLLOWING (i) d/2 AND d/b (ii) iF c/2 AND c/b THEN C = d.

EXAMPLE: THE POSITIVE DIVISORS OF 12 ARE $1_{12,3,14,6,12}$ WHILE THOSE OF -18 ARE $1_{12,3,6,9,18}$. Hence, THE POSITIVE COMMON DIVISORS OF 12 AND -18 ARE $1_{12,3,6}$. SINCE 6 is THE LARGEST OF THESE INTEGERS WE CONCLUDE THAT $gcd(12_{1}-18) = 6 \cdot OBSERVE ALSO gcd(-18,12)=6$. $\pm N$ ADDITION, $gcd(12_{1}18) = gcd(-12_{1}18) = gcd(12_{1}-18) = gcd(-12_{1}-18)=6$.

WHEN (i)-(iii) HOLD, WE SAY d= gcd(0,b).

<u>SOLUTION</u>: WE FIRST OBSERVE IT is ENOUGH TO SHOW THAT (i) => (ii) , (ii) => (iii) AND (iii) => (i) SINCE, FOR INSTANCE, TO SHOW (ii) => (i) WE USE (iii) => (iii) => (i).

(i) \Rightarrow (ii) LET S = 2au + bs : au + bs > 0, $U_1 = \xi$. WITHOUT LOSS OF GENERALITY, WE CAN ASSUME THAT $a \neq 0$. THEN, WE OBSERVE THAT $|a| \in S$ since $|a| = a \cdot u + b \cdot 0$ where u = 1 if a > 0 AND u = -1 if $a \perp 0$. Then, S is Nonempty AND BY THE WELL- ORDERING PRINCIPLE, S HAS A SMALLEST ELEMENT d. THEN, $d \in S$ AND BY THE DEFINITION OF S, THERE EXIST INTEGERS $s_1 \in \mathbb{Z}$ such that $d = a \cdot s + b \cdot t$. WE CLAIM THAT $d = qcd(a_1b)$. TO PROVE THIS CLAIM, WE OBSERVE BY THE DIVISION ALGORITHM THEOREM, THERE EXIST $q_1 r \in \mathbb{Z}$ SUCH THAT $a = q \cdot d + r$ with $o \leq r \leq d$. THEN,

 $\Gamma = a - q.d = a - q(as+bt) = a.(1-q.s) + b.(-qt).$ $IF \Gamma > 0 \quad THEN \quad \Gamma = a.u + b.\pi \quad with \quad u = 1-qs, \quad \pi = -qt.$ $THIS SHOWS \quad THAT \quad \Gamma \in S \quad AND \quad so \quad d \leq \Gamma \quad since \quad d \quad is \quad THE$ SMALLEST ELEMENT OF S, CONTRADICTING THAT $\Gamma \angle d$. WE THUS HAVE THAT $\Gamma = 0$. SO, $\partial = q \cdot d$, $q \in \mathbb{Z}$ AND d/2. Similarly, By THE Division Algorithm THEOREM, THERE EXIST $q', r' \in \mathbb{Z}$ such THAT $b = q' \cdot d + r'$ with $o \le r' \angle d$. THEN,

 $\Gamma' = b - q'd = b - q'(as+bt) = a.(-q's) + b.(1-q't)$ IF $\Gamma'>0$ THEN $\Gamma' \in S$ contradicting the choice of d. THEN $\Gamma' = 0$ which implies THAT d/b. Hence, d is a COMMON Divisor OF a AND b. Let C be a Positive Common Divisor of a AND b. THEN C/a AND c/b which implies THAT c/a.s, c/b.t AND so c/as+bt = d. THEN, c/d AND since $c_1d>0$, $c \leq d$. THIS SHOWS THAT $d = qcd(a_1b)$.

(ii) → (iii) BY ASSUMPTION WE KNOW d/∂ AND d/b. LET CEZ SUCH THAT C/∂ AND C/b. RECALL THERE EXIST SITEZ SUCH THAT 25+bt = d BY HYPOTHESIS. THIS SHOWS THAT C/25, C/bt AND SO C/25+bt = d.

(ini) = D(i) BY ASSUMPTION WE KNOW d/d AND d/b. SUPPOSE NOW THAT C/d AND C/b. THEN, BY HYPOTHESIS, C/d. THIS IMPLIES THAT |C| ≤ |d| = d. IF C>O THEN CE d AND WE ARE DONE. OTHERWISE, IF CLO, CL-C=|C| Ed AND THE RESULT FOLLOWS. <u>REMARK:</u> LET a, b & N. THEN D=b iFF 2/b AND b/2. TO PROVE THIS, WE FIRST OBSERVE, IF D=b WE CLEARLY HAVE 2/b AND b/D SINCE 2/D FOR EVERY DEZ. CONVERSELY, IF 2/b AND b/D THEN 12/2/b) AND /b/2/2/. THIS SHOWS 12/2/b). SINCE 2, b>0 WE THEREFORE HAVE THE INTEGERS D=b.

THIS REMARK IS VERY USEFUL TO PROVE TWO GIVEN NATURAL NUMBERS ARE EQUAL!

EXERCISE 2: LET $a_1b \in \mathbb{Z}$ NOT BOTH ZERO. PROVE THE FOLLOWING HOLD: (i) $(a_1b) = (b_1a)$. (ii) $(a_1b) = (-a_1b) = (a_1-b) = (-a_1-b) = (|a|, |b|)$. (iii) $(a_11) = 1$. (iv) $(a_10) = |a|$ if $a \neq 0$. (v) if $b \neq 0$ AND b|a THEN $(a_1b) = |b|$.

SOLUTION:

(i) Let $d = (a_1b)$ AND $d^* = (b_1a)$. Note that d/a AND d/b. Then d/b and d/a and so d/d^* . Similarly, since d^*/b AND d^*/a we have d^*/a and d^*/b which implies d^*/d . As d^*/d AND d/d^* , By the REMARK, WE HAVE $d = d^*$. (ii) WE WILL PROVE THAT $(a_1b) = (-a_1b)$. The REST of the EXERCISE is SIMILAR AND THEREFORE LEFT TO THE READER. LET $d = (a_1b)$ and $d^* = (-a_1b)$. Note that d/a and d/b. Then, we HAVE $d/(-1) \cdot a = -a$ and d/b. This implies that d/d^* . Similarly, SINCE $d^*/-a$ and d^*/b we have $d^*/(-1) \cdot (-a) = a$ and d^*/b . Thus, d^*/d . SINCE $d^*/d \neq a$ and d^*/b . And $d^*/d \neq a$.

(iii) WE OBSERVE THAT 1/2 AND 1/1. THEN, 7 IS A COMMON DIVISOR OF 2 AND 1. SUPPOSE THAT C/2 AND C/1. THEN $|C| \le 1$. WE THEREFORE HAVE (2/1) = 4.

(IV) Let $\Delta \in \mathbb{Z}, \Delta \neq 0$. Note that all and so, $|\Delta|/\partial$. IN ADDITION, $|\Delta||O$. SO, $|\Delta|$ is a common divisor of a and 0. Suppose now that $|\Delta|$ and $|\Delta|$. $|C| \leq |\Delta|$ AND SO, $|C \leq |\Delta|$. THEREFORE, $(\Delta_1 \circ) = |\Delta|$.

(V) LET $b \in \mathbb{Z}$, $b \neq o$. Since $b \mid b$ and $b \mid a$ we observe $|b| \mid b$ and $|b| \mid a$. Then |b| is a common divisor of a AND b. SUPPOSE NOW THAT $c \mid a$ and $c \mid b$. Then $|c| \leq |b|$. AND SO, $c \leq |c| \leq |b|$. This shows that (a,b) = |b|.

EXERCISE 3: Let $\partial_1 b \in \mathbb{Z}$ or integers. Prove that $(\partial^4 + b^4 - 2 + 16) = 16$.

Solution: BY EX.2(V) IT SUFFIES TO PROVE 16 $\left| \frac{\partial^{4}+b^{4}-2}{2^{k}+b^{4}-2} \right|$ FROM THE BINOMIAL THEOREM WE OBSERVE $(2x+y)^{4} = \overset{4}{\underset{k=0}{\overset{}{\underset{k=0}{\overset{}{\underset{k=0}{\overset{}{\atop}}}}} \left(\frac{4}{k} \right) \left(\frac{2x}{2x} \right)^{k} y^{4-k}$

$$= {\binom{4}{2}} \frac{1}{4} + {\binom{4}{1}} \cdot 2 \times \frac{1}{4} + {\binom{4}{2}} \cdot 4 \times \frac{1}{4} \cdot \frac{1}{2} \cdot 4 \times \frac{1}{4} \cdot \frac{1}{4$$

WE NOW OBSERVE THERE EXIST 9, S & Z SUCH THAT 2=29+1 AND b=25+1 By THE ALGORITHM DIVISION THEOREM. WE THEREFORE HAVE

$$\partial^{4} = (29+1)^{4} = 169^{4} + 329^{3} + 249^{2} + 89 + 1,$$

$$b^{4} = (25+1)^{4} = 165^{4} + 325^{3} + 245^{2} + 85 + 1.$$

THEN,

 $\frac{\partial^{4} + b^{4} - 2}{\partial^{4} + 32q^{3} + 24q^{2} + 8q + 165^{4} + 325^{3} + 245^{2} + 85}{\partial^{4} + b^{4} - 2} = 16(q^{4} + 2q^{3} + 5^{4} + 25^{3}) + (24q^{2} + 8q) + (245^{2} + 85),$ WE NEXT CLAIM THAT $16/24m^{2} + 8m$ FOR EVERY MEZ. SUPPOSE FIRST THAT M is EVEN. THEN $M = 2k / k \in \mathbb{Z}$. Sop $24m^{2} + 8m = 8m(3m + 1) = 8.2k.(3.2k + 1) = 16k(6k + 1).$ As $k(6k+1) \in \mathbb{Z}$, THIS SHOWS $16/24m^{2} + 8m.$ Assume NEXT THAT M is OND, THEN M = 2k + 1, $k \in \mathbb{Z}$. THEREFORE, $24m^{2} + 8M = 8m(3m + 1) = 8(2k + 1)(3(2k + 1) + 1)$

 $= \Im(2h+1)(6k+4) = \Im(2h+1)(3h+2)$

= 16 (2h+1)(3h+2) WITH (2h+1)(3h+2) EZ. So, 16/24m²+BM. THIS PROVES OUR CLAIM. HENCE, USING THAT CLAIM, WE CAN CONCLUDE THERE EXIST 9', S' EZ SUCH THAT

$$24q^2 + 8q = 16q'$$
, $24S^2 + 8S = 16S'$.

THUS,

$$\partial^{4} + b^{4} - 2 = 16(q^{4} + 2q^{3} + s^{4} + 2s^{3}) + 16q^{1} + 16s^{1} = 16W$$

FOR SOME WE Z. THIS PROVES $16|\partial^4+b^4-2$. Hence, $(\partial^4+b^4-2, 16) = |16| = 16$.

EXERCISE 4: PROVE THAT, FOR A POSITIVE INTEGER M AND ANY INTEGER a, THE NUMBER gcd (a, a+m) divides M. IN PARTICULAR, gcd (a, a+1) = 4.

<u>Solution</u>: Let $d = (a_1 a + m)$. THEN, $d|a + m a_0$, d|(a + m) - a which implies $d|m \cdot IN$ particular, if m = 1, we have d|1 and so $d \in (-1, 1)^{1/2}$. Since d > 0, we have d = 1.

EXERCISE 5: Let 2,6 EZ. PROVE THE FOLLOWING HOLD:

- (-) THERE EXIST INTEGERS X AND Y FOR WHICH C= 2×+ by iFF gcd (21b) | C.
- (ii) if there exist integers x and y for which 2x+by=gcd(ab)then gcd(xy)=1.

Solution: Let d= (aib).

(i) SUPPOSE THERE EXIST INTEGERS X AND Y SUCH THAT $C = \partial x + b y$. Since $d|\partial$ and d|b we have $d|\partial x , d|by$. Therefore, $d|\partial x + b y$ which means d|c. Conversely, by $ex \cdot h$, we KNOW THERE EXIST SITE E such THAT $\partial s + b t = d$. As d|cTHERE EXISTS $b \in E$ such THAT c = db. THEREFORE,

C = d.k = (a + bt)k = a(sk) + b(tk). TAKING X:= $sk \in \mathbb{Z} / Y := tk \in \mathbb{Z}$ we Have C = ax + by. THE RESULT FOLLOWS.

(ii) OBSERVE THE NUMBERS 2 1 b EZ SINCE d/2, d/b.

THEN , THERE EXIST XIYEZ SUCH THAT $\frac{\partial}{\partial x} + \frac{b}{\partial y} = 1$. LET $d^{*} = (X|Y)$. NOTE $d^{*} > 0$, $d^{*}|X$ AND $d^{*}|Y$. THUS, $d^{*}|\frac{\partial}{\partial x}$, $d^{*}|\frac{b}{\partial y}|Y$ AND so $d^{*}|\frac{\partial}{\partial x} + \frac{b}{\partial y}| = 1$. THEREFORE, $d^{*} \in \{-1,1\}$. Since $d^{*} > 0$, we have $d^{*} = 4$.

DEFINITION: TWO INTEGERS 2 AND b, NOT BOTH OF WHICH ARE ZERD, ARE SAID TO BE RELATIVELY PRIME OR COPRIME IF gcd(21b)=1.

SOME IMPOPTANT RESULTS

LET $a_1b \in \mathbb{Z}$, NOT BOTH ZERO. THE FOLLOWING HOLD: R(i) $gcd(a_1b) = 1$ iFF $a_X+b_Y=1$ FOR SOME $x_iy \in \mathbb{Z}$. R(ii) iF $gcd(a_1b) = d$ then $gcd(\frac{a}{d_1}, \frac{b}{d_1}) = 4$. R(iii) LET $c \in \mathbb{Z}$. iF alc AND blc, with $gcd(a_1b)=1$ then ab|c. R(iv) LET $c \in \mathbb{Z}$. iF albe with $gcd(a_1b)=1$ then a|c.

EXERCISE 6: LET
$$2 \in \mathbb{Z}$$
. Show THE FOLLOWING:
(i) $qcd(2a+1, 9a+4) = 1$.
(ii) $qcd(5a+2, 7a+3) = 1$.
(iii) $iF a is obd Then qcd(3a, 3a+2) = 4$.

SOLUTION: LET DEZ.

(i) By R(i) ABOVE, it SUFFIES TO PROVE THERE EXIST MINEZ
SUCH THAT
$$(2a+1)m + (9a+4)m = 4$$
.
WE OBSERVE $(2a+1)m + (9a+4)m = a \cdot (2m+9m) + (m+4m) = 4$.
THEREFORE (WE MAY TAKE MINEZ SUCH THAT
 $2m + 9m = 0$ and $2m + 9m = 0$ and $m = -2$.
 $m + 4m = 1$ $2m + 6m = 2$ $m = 9$

SOINE HAVE
$$(22+1)\cdot 9 + (9a+4)\cdot(-2) = 9-8 = 1$$
.
THUS, BY R(1), $gcd(2a+1, 9a+4) = 1$ FOR ALC 26E.
(ii) Let $d = (5a+2, 7a+3)$. THEN, we observe
 $d|5a+1 \Rightarrow d|(5a+2)\cdot 7 \Rightarrow d|35a+14$
 $d|7a+3 \Rightarrow d|(7a+3)\cdot 5 \Rightarrow d|35a+15$
we thus HAVE $d|(35a+15) - (35a+14)$, THAT is $d|1$.
So; $d \in \{-1, 1\}$. Since $d > 0$ we have $d = 4$.
(iii) Suppose that $a \in \mathbb{Z}$ is ord. Let $d = (3a, 3a+2)$. Then
 $d|3a = Amb d|3a+2$. This implies that $d|(3a+2) - 3a$, that is
 $d|4$. Since $d > 0$ we have $d \in \{1, 2\}$. Suppose that $d=2$.
Then $2|3a + 8y$ $R(iv)$ Above, since $gcd(2i3) = 1$, we have
 $2|a + 7his$ Shows that a is even contradicting that 215
 odd . Therefore $d \neq 2$ and so $d = 1$.

EXERCISE 7: PROVE THE FOLLOWING HOLD:

- (i) THE PRODUCT OF ANY THREE CONSECUTIVE INTEGERS is DIVISIBLE BY 6. (ii) THE PRODUCT OF ANY FOUR CONSECUTIVE INTEGERS is DIVISIBLE BY 24.
- (iii) THE PRODUCT OF ANY FIVE CONSECUTIVE INTEGERS IS DIVISIBLE BY 120.

SOLUTION:

(i) Let $a \in \mathbb{Z}$. We need to prove that G | a(a+1)(a+2). We FIRST Assume that $a \in \mathbb{N}$. We will prove that G | a(a+1)(a+2)FOR ALL $a \in \mathbb{N}$. Let $S = \{a \in \mathbb{N} : G | a(a+1)(a+2)\}$. Note that 1. (n+n). (n+2) = 1.2.3 = 1.6. This shows that $1 \in S$. Given hen, h > 1, Assume THAT hes. THEN h(h+1)(h+2) = 69 for some 9 e.N. WE NEED TO SHOW THAT $h+1 \in S$. NOTE THAT (h+1)(h+2)(h+3) = h(h+1)(h+2) + 3(h+1)(h+2)

= 69 + 3(h+1)(h+2)

NOW, OBSERVE (h+1)(h+2) is EVEN SINCE h+1 AND h+2 ARE TWO CONSECUTIVE INTEGERS AND SO, ONE OF THEM IS EVEN. SO, (h+1)(h+2) = 29' FOR SOME 9'EIN. THEREFORE, (h+1)(h+2)(h+3) = 69 + 3.29' = 6(9+9') WITH 9+9'EZ. THEN 6/(h+1)(h+2)(h+3) AND SO, h+1 ES. BY THE PRINCIPLE OF MATHEMATICAL INDUCTION, S = IN. THIS MEANS THAT $\partial (\partial +1)(\partial +2)$ is divisible by 6 FOR EVERY $\partial \in N$. NOW, OBSERVE $\partial (\partial +1)(\partial +2) = 0$ WHENEVER $\partial \in \{-2i-7i0\}$ AND SO 6/ $\partial (\partial +1)(\partial +2)$ FOR EVERY INTEGER $\partial \geq -2$. ASSUME NOW THAT $\partial (-2$. THEN $\partial (\partial +1)(\partial +2) \leq 0$. NOTE

a. (a+1). (a+2) = (-1). (-1). a. (a+1). (a+2)

 $= (-1) \cdot (-1) \cdot (-1) \cdot (3+1) \cdot (-1) \cdot (3+2)$

= (-1). (-2). (-2-1). (-2-2)

SINCE -2-270, BY THE ABOVE COMMENTS, THE PRODUCT

 $(-2-2) \cdot (-3-2+1) \cdot (-3-2+2) = (-2-2)(-3-1)(-3) = 6 \cdot t + t \in \mathbb{N}.$ THEREFORE, $a(3+1)(3+2) = (-1) \cdot 6t = 6 \cdot (-t) + -t \in \mathbb{Z}.$ THIS SHOWS THAT a(3+1)(3+2) is divisible by 6 For every $a \in \mathbb{Z}.$

(ii) LET DEZ. WE WILL SHOW THAT 24/2(241)(242)(243) FOR EVERY JEZ. WE FIRST CLAIM THAT 24/2(241)(242)(243) FOR EVERY DEN. TO PROVE THIS WE PROCEED BY INDUCTION. IF D=1 THEN 1. (1+1). (1+2). (1+3) = 4! = 24 AND 24/24. GIVEN $h \in IN$ $_{1}h > 1$, Assume h(h+1)(h+2)(h+3) = 249, g $\in IN$. WE WILL PROVE THAT 24/(h+1)(h+2)(h+3)(h+4). NOTE THAT

(h+i)(h+2)(h+3)(h+4) = h(h+i)(h+2)(h+3) + 4(h+i)(h+2)(h+3)

= 249 + 4(h+1)(h+2)(h+3)

NOTE THAT h+1, h+2, h+3 ARE 3 CONSECUTIVE INTEGERS. SO, BY (i), THERE EXISTS gie IN SUCH THAT (h+1)(h+2)(h+3)=69'. THEREFORE, 24/(h+1)(h+2)(h+3)(h+4) SINCE

(h+1)(h+2)(h+3)(h+4) = 249 + 4.69' = 24(9+9') with $9+9' \in \mathbb{Z}$. THIS PROVES OUR CLAIM. WE NEXT OBSERVE 24/2(2+1)(2+2)(2+3) FOR EVERY INTEGER $a \in 29^{-1}(-2)(-3)$ SINCE a(2+1)(2+2)(2+3) = 0 = 24.0. ASSUME NOW THAT a < -3. THEN, $-a-3 \gg 4$ MD so THE PRODUCT (-a-3)(-a-3+1)(-a-3+2)(-a-3+3) = (-a)(-a-1)(-a-2)(-a-3)is divisible by G. THEN, G/(-a)(-a-1)(-a-2)(-a-3). So, $G/(-1) \cdot (-a) \cdot (-1) \cdot (-a-1) \cdot (-1) \cdot (-a-2) \cdot (-1) \cdot (-a-3)$. THAT is, $G/a \cdot (2+1)(2+2)(2+3)$. THIS SHOWS THE PRODUCT a (2+1)(2+2)(2+3) is divisible by 24 FOR EVERY $2 \in \mathbb{Z}$. THE RESULT FOLLOWS.

(iii) SIMILAR TO (i)-(ii) ABOVE AND THEREFORE IT IS LEPT AS AN EXERCISE.

EXERCISE 8: Let $a \in \mathbb{Z}$ be an obd integer. Show that The Product $a(a^2-1)$ is divisible by 24.

Solution: Let $\partial \in \mathbb{Z}$ be an obdinteger. Then, by the Division Algorithm Theorem, $\partial = 49 + \Gamma$ for some $g_1 \Gamma \in \mathbb{Z}$ with $\Gamma \in \langle 0|1|2|3 \langle 0 \rangle$. Since $\partial is odd$, $\Gamma \notin \langle 0|2 \langle 0 \rangle$, $And So, \Gamma \in \{1|3 \rangle$. Then $\partial^2 = (49 + \Gamma)^2 = 169^2 + 89\Gamma + \Gamma^2$. IF $\Gamma = 1$, we set $\partial^2 = 169^2 + 89 + 1 = 8(29^2 + 9) + 1$ while iF $\Gamma = 3$, we have $\partial^2 = 169^2 + 249 + 9 = 8(29^2 + 39 + 1) + 1$. Theorefore, There Exists $k \in \mathbb{Z}$ such that $\partial^2 = 8k + 1$. That is, $\partial^2 - 1 = 8k$. Then, $\theta \mid \partial^2 - 1$ which implies $\theta \mid \partial(\partial^2 - 1)$. On the other Hand, $\partial B = 2 - 1$ which integers. Then, by $E \times .6(2)$, it is Divisible by G. Since $3 \mid 6$ and $6 \mid \partial(\partial^2 - 1)$ we have $3 \mid \partial(\partial^2 - 1)$. Note that (3/8) = 1. So, by RLini) Above, $3.8 \mid \partial(\partial^2 - 1)$. That is $24 \mid \partial(\partial^2 - 1)$.

EXERCISE 9: CONFIRM THE FOLLOWING PROPERTIES OF THE GREATEST COMMON DIVISOR: (i) iF (aib)=1 AND (aic)=1 THEN (aibc)=4. (ii) iF (aib)=1 AND Cla THEN (bic)=1. (iii) iF (aib)=1 THEN (ac,b) = (cib). (iv) iF (aib)=1 AND clatb THEN (aic)=(bic)=1. (v) iF (aib)=1, d/ac AND d/bc THEN d/c. (vi) iF (aib)=1 THEN ($a^{2}_{1}b^{2}$)=4. <u>SOLUTION</u>: LET 21 bic EZ DIFFERENT FROM O.

(i) SINCE $(a_{1b}) = 1$ AND $(a_{1c}) = 1$, THERE EXIST $m_{1m_{1}p_{1}q_{6}Z_{6}}$ SUCH THAT $a_{m+bm} = 1$ AND $a_{p+cq} = 1$. THEN, WE CAN WRITE $1 = 1.1 = (a_{m+bm})(a_{p+cq}) = a_{map} + a_{mcq+bmap} + b_{mcq}$ $= a(m_{ap} + m_{cq+bmp}) + b_{c}(m_{q}).$

HENCE, THERE EXIST XIYEZ, X:= maptmcgtbmp, Y:= mg SUCH THAT $a \times bcY = 1$. THIS SHOWS $(a_1bc) = 1$. (ii) SiNCE $(a_1b) = 1$, THERE EXIST XIYEZ SUCH THAT $a \times bY = 1$. NOTICE a = cg, $g \in \mathbb{Z}$ As c|a. WE THUS HAVE

1 = ax+by = cqx+by = by + c.(qx).THIS SHOWS THAT (b,c) = 4.((i) LET $d = (ac_{1}b) \text{ AND } d^{*} = (c_{1}b).$ Since $d^{*}/c, d^{*}/b$ THEN d^{*}/ac AND $d^{*}/b.$ So, d^{*} is A common divisor of ac AND b. THEN, d^{*}/d . Observe THERE EXIST SITE Such THAT as+bt=1 Since $(a_{1}b)=1.$ IN Addition, As d/ac AND d/bWE CAN WRITE ac=dk, b=dl For some $k, l \in \mathbb{Z}$. NOTICE $d^{*}=cp+bq$ For some $p,q\in\mathbb{Z}.$ THEREFORE, we HAVE $d^{*}=d^{*}.1=(cp+bq).(as+bt)$ = cpas+cpbt+bq(as+bt) = dk (ps) + dl (cpt+q(as+bt)) = d.v For some $v\in\mathbb{Z}.$ THIS SHOWS THAT $d/d^{*}.$ SINCE $d>0, d^{*}>0$ we HAVE $d=d^{*}.$ (iV) LET $d = (a_{1}c)$ AND $d^{*}=(b_{1}c).$ We know THAT $(a_{1}b)=1$ AND c|atb. SINCE d|c AND c|atb we get <math>d|atb. SINCE dla we have d/(a+b)-a, that is d/b. So, d is a common divisor of a and b then $d \leq (a+b) = 1$ which means d=1. Similarly, As $d^{*}|_{C}$ and c/a+b we be $d^{*}/a+b$ and so $d^{*}/(a+b)-b = a$. Since d^{*}/a and d^{*}/c we have $d^{*} \leq d=1$. This shows $d=d^{*}=1$.

(V) SURPOSE
$$(a_1b)=1$$
, d/a_c , d/b_c . Then there exist
integers $m_1m_1k_1l$ such that $a_m+b_m=1$, $dk=a_c$, $dl=b_c$.
THEREFORE, we can write
 $c=c.1=c(a_m+b_m)=(a_c)m+(b_c)m=dk_m+dl_m=d(k_m+l_m).$
THIS SHOWS THAT d/c .

(Vi) SUPPOSE (alb)=1. By (iii) Above we get

$$(a^{2}b) = (a \cdot a \cdot b) = (a \cdot b) = 1.$$

So, if (alb)=1 then $(a^{2}b) = 1.$ Note that $(b_{1}a) = (ab) = 1.$
Then $(b^{2}a) = 1.$ So, $(a^{2}b) = (b^{2}a) = 1.$ we next APPLY
(iii) Above Again. Since $(a_{1}b^{2}) = 1$ then
 $(a^{2}b^{2}) = (a \cdot a \cdot b^{2}) = (a \cdot b^{2}) = 1.$

EXERCISE 10: LET the DENOTE THE M-TH TRIANGULAR NUMBER. FOR WHAT VALUES OF M DOES the Divide tott2t...ttm?

Solution: RECALL THAT
$$\pm m = \binom{m+1}{2} = \frac{m(m+1)}{2}$$
 AND THE SUM

$$\frac{\sum_{k=1}^{m} \pm k}{k} = \frac{m(m+1)(m+2)}{6} = \frac{m(m+1)}{2} \cdot \frac{m+2}{3} = \pm m \cdot \frac{m+2}{3} \cdot \frac{m+2}{3}$$
THIS MEANS THAT $\pm m$ Divides THE SUM $\pm 1 \pm 2 \pm \dots \pm m$ iff the

NUMBER $\frac{M+2}{3} \in \mathbb{N}$. By THE ALGORITHM DIVISION THEOREM, WE CAN WRITE $M = 39 + \Gamma$ with $9_1\Gamma \in \mathbb{N}$, $\Gamma \in \{9,1,2\}$. NOTE THAT $M+2 = 39 + \Gamma+2$. So, if $3 \mid M+2$ THEN $3 \mid \Gamma+2$ WHICH IMPLIES $\Gamma=1$. THEREFORE M=39+1, $9 \in \mathbb{N}$.

EXERCIS	E 11;	LET 21b, C & Z, DIFFERENT FROM 0. IF 2/bC
show .	THAT	a/ (21b) (21c)

Solution: Let $d = (a_{1b})$ AND $d^{*}=(a_{1c})$. Then, $d = a_{5+bt}$ AND $d^{*}=a_{7}+c_{7}$ for some $s_{1t_{1}}p_{17} \in \mathbb{Z}$. Moreover, There EXISTS $l \in \mathbb{Z}$ Such THAT bc = al since a/bc. Hence,

$$dd^{*} = (as+bt)(aPtcq) = (as+bt)aP + (as+bt)cq$$

$$= aP.(as+bt) + as.cq + btcq$$

$$= a[P(as+bt) + scq] + bc.tq$$

$$= a[P(as+bt) + scq] + al.tq = a.W \text{ for some well.}$$
We therefore HAVE $a | dd^{*}$.

EXERCISE 12: Let 2, b $\in \mathbb{Z}$ NOT BOTH ZERD. IF (2, b)=1 PROVE THAT $(2^{m}, b^{m}) = 1$ FOR EVERY $m_{i}m \in \mathbb{N}$.

<u>Solution</u>: Let a be zero not both zero such that (a,b) = 1. Then there exist site z such that astbt=1. We first show that $(a^{n}, b) = 1$ for every me N. Let s denote the set s := d mein!: $(a^{n}, b) = 1\frac{1}{2}$. Note that les SINCE $(a_{1}b) = 1$. Assume NEXT THAT WES FOR SOME WEN, h > 1. THEN $(a_{1}^{h}b) = 1$. By EX. 9(iii) WE HAVE $(2^{h+1}b) = (a_{1}^{h}a_{2}b) = (a_{1}^{h}b) = 1$

OF MATHEMATICAL INDUCTION.

WE NOW Fix MEIN AND CONSIDER THE SET $T := \{ men : (\partial^{m}b^{m}) = 1 \}$. IT FOLLOWS FROM THE ABOVE COMMENTS THAT 1 ET SINCE $(\partial^{m}, b) = 1$. Assume NEXT THAT heT FOR SOME hen, h>1. THEN $(\partial^{m}, b^{h}) = 1$. By EX. 9(111) WE HAVE

 $(a^{m}, b^{h+1}) = (b^{h+1}, a^{m}) = (b^{h}, b, a^{m}) = (b_{1}, a^{m}) = (a^{m}, b) = 1.$ THIS SHOWS THAT WHIET AND SO T=N. THEREFORE $(a^{m}, b^{m}) = 1$ For every $m, m \in \mathbb{Z}$.

AS AN EXERCISE, PROVE EXERCISE 12 WITHOUT INDUCTION BUT USING LINEAR COMBINATIONS AND THE BINDMIAL THEOREM.

EXERCISE 13: LET DIDEZ NOT BOTH ZERO. LET CEZ, $c\neq 0$. PROVE THE FOLLOWING HOLD: (i) (CD, CD) = ICI. (DD)(ii) iF(DD) = d THEN $(D^m, D^m) = d^m$ FOR EVERY MENN.

SOLUTION :

(i) LET DIDEZ NOT BOTH ZERO. LET $C \in \mathbb{Z}_{i} \subset fo$. Let $d = (c_{01}c_{0})$ AND $d^{*} = (a_{1}b)$. Note that there exist $x_{1}y \in \mathbb{Z}$ such that $d^{*} = a_{1}x + b_{1}y$. This implies that

$$|c| \cdot d^* = |c| (ax+by) = |c|ax+|c|by .$$

RECALL IF W|Z THEN W|Z.E FOR EVERY $E \in Z$. IN PARTICULAR | W|Z AND W|-Z. SINCE d|Ca AND d|cb we have d|cl.a AND d|cl.b. So, d|cl.ax AND d|clby. THIS SHOWS d|clax+|clbyWHICH MEANS d|cld*. WE NOW CLAIM THAT |c|d*|ca. TO PROVE THIS, NOTE d*|a AND SO $d*L = a_1 L \in Z$. THEN

$$|c|d^{\dagger}l = |c|a = \begin{cases} ca & if cool \\ (-c)a & if cool \end{cases}$$

So, $|c|d^{*}||c|d$ which implies that $|c|d^{*}|cd$. Since $d^{*}|b$ we similarly have $|c|d^{*}||c|b$ and so $|c|d^{*}|cb$. THEN, $|c|d^{*}|cd$ and $|c|d^{*}|cb$ implies $|c|d^{*}|d$. WE THEREFORE HAVE $d = |c|d^{*}$.

(ii) SUPPOSE (2ib) = d. THEN, d = 3x+by FOR $xiy \in \mathbb{Z}$. NOTE $1 = \frac{3}{d}x + \frac{b}{d}y$ where $\frac{3}{d}i\frac{b}{d} \in \mathbb{Z}$. THIS SHOWS $\left(\frac{3}{d}i\frac{b}{d}\right) = 1$. SUPPOSE $\frac{3}{d} = 2i\frac{b}{d} = m$. THEN, 3 = d2 AND b = dm with (2im) = 1. So, FOR EVERY MEN,

$$(a^{m}, b^{m}) = ((de)^{m}, (dm)^{m}) = (d^{m}, e^{m}, d^{m}, m^{m})$$

= $|d^{m}| \cdot (e^{m}, m^{m}) = |d|^{m} \cdot 1 = |d|^{m} = d^{m} \cdot E^{\times 12(a)}$