Exercise:  PRove THAT iF ol is A CoMMON DivisoR OF & Aws b, Then

d=qcd (3:b) iF Aw ony iF  ed (%,%): 1.

Solution:

SyUPPose FIRST THAT d= %caL(a.b) THEN) THERE EXisT X Yy € Z Such THAT  d=3x+by.

TheN WE cAn WRiTE B X+ b y-1. Nore T#aT d[3, dlb Tews vs THAr
d d

2 aw b ARe ivteeers. leT dF= oécot( 3, b ). we THeReFore HAve Twe

v o Eld/

NOMBERS d*}% Aud d*/% WHICH iMPLIES d*/%wr%r:'l_ o, er{-a,qit.

siNce d* Yo  we T HAve d*= 4.

CoNVERSELY | 1F <&c4 (E_,Ej =1 THen TieeE exisT S5t €2
A d

SoeH THAT 2. S+ Y £ =1 TYen, . S5tbt = Ler d*= (&ﬂﬂ)-

d d

As o 1S A commen DIRR F BOTH 9 AWM b, we e d£dT

hoveorr, Since  dHa aw JIb  we mae M| as aw df|bt

o, dF| astbt  whih wiies  JF|d. THIS Shows dP2Ld

we THElstRe  fne dPod.

Exercise: |ev a,be Z BE CoPRime. WROE Thar e (3+h)3-b) €442},

Solution: |1 d= (a+b,a-%)  ~hen , d|3+b A d]a-b.
This iMPLiES THAT d\(a)r\o)ﬂa-b):g& AND dl(a%\o)-tévb):ab-
Since  d[9a awd dlob we HAE  d) (2312Y). Jow we novice
(22,2%) = Jol. (8W) = 2 (av) =2 1=2 e Q) =1. Tihg
Shows THAT d|9 A S d € AN2Y. Notice & Q=3 ,b=1
we HAE  (A)=1 AW (a4938-b) = (42) = 2. SimiLARLY | iF
2= Md b= ; THe nweees (ab)=1 and (Atr D)= (1) =1.

4o | morh Possitle VALueS oF . CAW  occur.




Exercise: [ev a,beZz B CoPRiMe. TinD acod(23+b) 33-2b).

Soluktion: [etv d= (23+933-29). THew

)l d|234v d|(2av)> d|6arzp "
dlza-1 T d|Ea-m)r T dlea-un T
SIMLARLY , WE HAVE
d| 23+0 d|(23%) (1) d|-5-20
€ = = d| 233
d| 35-2v d| 33 -2 d|33-2b

SiNce  d|7d A d|3b wWE HAVE ol[(3317b). NEXT ,wE oOBSERVE THE
NorBer  qed (#3,30) = 13 qed () =F .1 = F Since g Aw b AE COMRIME.
THiS Shows THAT d e [4?| We WilL Now Show THAT RotH Possible VAWes G OccuRr.
TF Q=M b-0 We WAE (23+033-2b)= (%5) =1 WHile (F A=3,b=4 THE NMBER

[13 +b) 33‘5) = (#N=2. Tae Resur Foliows.

Exercise: lev ADE Z coPriME. PROVE THE FollowiNG (i) = (i) HolD :
() acd (3+b) 3%6?) = 1. (i) acd (a+o db) =1 .

Solution:

() Lev d= (340 Q%%). Nove ThaT d|a+b Avp d| a0 . So | d| 940)(a-b) = a2—p?
WE TheRerope HAve  d(aMt) +(32-b*) Which implies  d| 28% simithery , d| (a2+h?)— (%),
So, d|2pt. Tuis SHows TaaT df (23%26%). NoTice pow (287 24) = 2] (3%%*) = 2.(2,h) % 2.
REALL WhewveveR (AW) =1 we Prowed (3" K")=1 T ewery men. HeneE dl2. Turg ves
de f4Y. notE iF A=bL=A THen d=(22)22 WHILE VF 322,021 THen d=(3,5)=1 THUS,
BotH Possiie VALWE FoR b CAn occur. THIS SHows Eitwer d=1 ok d=2.

(i) lev d= (3%0,3p) Nowe Tt d|a4b 4w d)ab. So, d|B+b)d — Bb which Shows
ThAT dl 9% SiWLARLY WE WA d[(3)b -3b, Tuer 15 d| b2, WE T wae d | (336D
Since ()= wE kave (Q42)=1 . So )] WHICH SHowS THAT d=4.




Exercise: Lev abe 2 ,040bo mmler meN. Show THAT & b iF Aw omy iF 3™ |b™

Solution:
let 3 beZ My Me N. Since alb THeN There exisTe he Z suth THAT Jkob. Then | WE HAVE
b" = @R)" 2 3" R with R™eZ. THic SHows ThAT " |b™. CoMERSELY) AssE  THAT "™
THeN WE CAN WRTE aM-q.zb Tor Some g € Z. leT d= Acd (3\b). THeN, THERE EXisT Sptez
Such THAT Q= d-S , b=odt Aws (5/£)=1. THIS (MPLies THAT

d" 5" a4 - ()9 - 3" =b" = d"™ = " (5" -t") =0 S"aq =t

dyo

THIS SHows THAT S™|+™ We THeReFore HAve TuAT acet (s™, £*) = Is"=1s|™.
However | since (s£) =4 we Have (SM£™)=1 WHick inPLies THAT 15| =1 4w So
s e -1 17, Next | we oeseRve eitger  d=d oOR d=-d. ConseQuenTly , Eiter

b=3.+ ok b= d.(-¥) . kencg, 3lb 4 e WAvTED TO Show.

Exercise: PROVE THAT |F %cd.(&w):/l , THeN %cd,( 3+b, ab)=1.

Solution:

let Abe 2 Su THAT (aib)=1 LeT ol= (8+b,3b) . Then, we nore

d]a+b d | @b)-a dJ ] 8%ab
=5 = = d[(a%m)-ab  — J[a*

d]ab d[ ab df ab
SimLARLY | We ©OBserve
d| ato d|@w) b d[ab+6?
= = = d[(abt")-sb = dfb%
d| ab d| ab ol 8b

Now, NoTice THAT cl/aL Ao dlb? . This syows THAT d/(al,bl). sivee  (db)=1

we TheReFoRe WA (34 b?) =1. Hence q’/4 WHICH MEANS o/e{-1,4}. Sinte
dSo We wive d=1. THe ReSULT FolLowS:




T He NOTioN OF GreATesT CoMMON DiyiSoR CAN RE EXTENDED To MORe THAN TWO INTECERS
iV AN OBVIOVS WAY. TN Tke CASE OF THREE INTEGERS J(biC EZ , noT AL 2&RD,
THE NUMBER %Col/(,a(ch) iS DEFined TO Be THE positive inTEGER ol HAviNG THe
Follo wiN®  PROPERTIES :

(i) o is A DisissR oF EAcH oF b, C .

(¢) i€ |3, wlb, hle THen b £ oL

Exercise: [er 3)bjc Be iNTEGERS, No TWo OF WHICH ARE 2eRo Amd LeT

d= (3/bie). Show AT d= ((3b),c) = (3)(be)) = (L3, b).

Solution: |er d)bjC & F |, No Two oF WhicH ARE 2ero . leT ol= Cé,b,c)/
di= (3b) A Dp= (da, ). We FiRST PRove THAT Dq=db. NoTE THAT By
DEFINTION OF Dy WE HAVE Dy|c And Difds. Siuithery | BY DEFiviTioN OF ola weE kA
da|l3 aw  di|b. TN SiNCE  Da[ds Aw ds |3 WE Hee Di|3. MopsoveR, 4s D) dy
pun  dalb  WE HAlE Di|b. TheeeFope , Dy DIWDES D b, e . THIS ImpLies THAT Dol
NOW |, we oBserve  diy= DX 4BY For soms xyez SiNCE  da=(ab). TN ABDITION, AS
ol,/a Avs dlb we HAe aé/ax/o(/by Ans 5o o(/ ax+by =dq. Sivce d/dy am
dle we ThseeFore HME df(dnC) Tharis | o] Da Aw> So ol £Dg. THIS
SHows THE NUMBERS ol= Dq.

let de = (szD ANy (ET Do = (8;dy) . WeE NexT Spow THAT Dao= Do

BY DefiniTio OF Do We HAE Dad Awd Da|dr. SimitARiy | By DEFinitioN OF o, WE AVE
dy[b M dele. Thew, Dalb aw e . Siwce s Aw bulb we hne Da)(ah) =dh. 5o,
D;) dy Ay Dife  ivpries Duf(dme) = D1, TkAT is Dby . ON THE oOTHeRr HAND, BY DEFiNiTION

OF Dy We Hhe Difdy Ao Dalc. By DerwiTion oF dy , we Know dila amy dnlb. THis spows AT

Dl a | b avs Dile . 50, Dy Awmd m“b.::):oh. Sinee Dyla Am> Dq’c/z we THS HAve THAT



Daf(31ds) =Dy, Hewce, Dalva Aw> Dy=ba .

let ds= (81€) Awd Dy = (d3b). we vexm Show THAT Dy = Da. By Definitiod oF Dy , NoTice
Do|de mn Du|a. siwcidery, By Defwitiow oF da we ke dafb And dife. Twis iupies
TAT Dala, Drlb A Dufe . Sinae Dala A Dol L phve  Dsf(810) =d3. Thev,
As Do| ds A Dulb we HAve Do (dyb) =Dy . THIS Shows D, £ Ds.

OV The oTHeR HAND, By DEFWITION oF Dy, wE HAE Difols md Dafb. S
ds s A coumeN DBiulsoR oF A AN e, osla,dh]c whic imies Dsla; Dsle . As
Dy) b A Dale we ke Db/(b,c) =z . ThHeN | Siwce Dy]da2 Aws Dsja we
Have Dz (d2;3) . TwaT is Dy)D2 4w Dz £ Do. THereFoRE , Dy = D3.

CONSERUENTLY ] d= D= Do =Dy. The ResuT Toliows.

The Euclidean Algorithm (EA)

The GRehtesT CoHMON DiyiSoR OF Two (NTEGERS CAN Be Fouwd By LiSTiNG AlL THEIR
PossiTive Diuisops  AND  CHoOosiNG THe (ARGesT ONE Common To EACH . HoweveR, THS
i NoT A Good iDeA TFoR [ARGE NuMpeRrS! J| MoRe EFFcieNT PROCESE s THE

EocuneAN AleoriTm (E-A)  WHick iNvoLveS REPeATed APPLicATTonS OF The ALGoRiTHM

DivlsioN TheoreM (AD-T) . Te E4. (S BacicAlly  BASED ON THe NeXT RESULT:

Exercise: et 3,be Z bfo . SHow THAT iF A= b.g+r , WiTH g7 6Z THen

(3|b) = L'O| f‘).

Solution:
let d=(ab) AW LeT d*=(bF). We oBSeRe [ = 3 -ba. %o since d|b Then
dlbg, with geZ . 4s dla we Tos e d/a-bg =T. THIS Shows THT d is A

CommoN  DbivissR oF b AND . So, (v MsST Be d< dF, SiMiLARLY | SiNce dt|b THen

d*[ bg witk 36Z . S0, A5 I wE mue I/ ba+T = 8. THs stows JI* is 4




CoOMMON  DiVisoR oF QA AWdD b wliw mpLres J¥Ld. Hence o= JF

THiS LAST ResULT wNoT onNLy Allow US To CoMPITE  THE GREATEST CoMmON DIVISOR oF TWO

inTeeeRs 2, b, bfo BuT Also &ives US A WY To TFind A LiNGAR COMBINATION

AX+ by oF sSuw NuMBER.

LET ab € Z, bfo. THe FIRST sSTEP is To ALy THE ADT to Q Amo b To GeT

a= q,,,b +07 wWitH o&Mm4b . oF T HAPENS THAT T =o THen bla Ave  (ah)=lbl.

WieN F#o , DividE b BY 7 To Propuce [wrEcers 99, i SATISFYinG b=+ T2

With o0&t £Ty. JF Va=o Then (3/b)=(b,; M) = (™,0) = Ta, OFRWISE WE

PRoceed As BEFore . THIS STepPS (Av BE DNE  UNTIL SoME 2ERo REMAINDER APPEARS,

SA\/[ AT THE (M+)-TH STAGE WHERE Tm- IS DiWED BY Tm . Nove A 2epo ReMAinbdeR

OCCORS  SOONER OR LATER BECAUSE THE DeCREASiNG SEQUENCE B> T >T>... 20

CAWOT ConTAINS Moge TyaN |b| iwTesers. We THEREFore HAve

a;ﬂqb‘#“ql OLF"Lb
b= aa-r'\’f-rz | oL T2 LM
M= ‘ig.r'; s oL 3 Ty

-2 = Gm. Tu- +Tm OL Tm L T
T = Qu.Tm +0O

So, we Have  (3b) = (bym) = () = ... = (fas,Pn) = (" O) = Tim.

THIS SHOWS THAT T, THE LAST WowdeRo ReMAWMER THAT APPEARS , E@uAls (9ih).

Exercise: (se THe EocLieAn ALGORiTHM To FND x,Y € F SutH THAT

() (1%, 183) = 99 x + 183 Y (ii) (25322,63) = 2532 X + 63y

Solution:
C/i) THe APPROPTATE  APPLICATIONS OF e ADT PRobDUCE THe NexXT

ERUJALITTES - 990 = 184.5 + 55
189+ = ©§55.3 + 72
56 = 22. 2 + 11

22 = 11. 2 + ©




They, WE OBSERVE
(799, 182) = (18%,55) =(55,22) =(22(1) — (11,=) = 71 .
To WRITE 41 As A LiveAr CoMBINATION OF 990 AND 18F |WE STapT THE

NEXT-TO —[AST EQuATION TF =22.2 411 ANd SUCCESSIVELY ELMINATE ThE RempivdeRS

22 Avd 55 As  Follows

1= 5%5-9.92 - 55-2.(18%-3.55)
— 55 -2.193 +6. 55
= 7.55 — 2.18%
3.(990-182.5) — 2. 18%
— F.990 — 35.18% - 2. {8}
— F 990 — 3%. (8F = 990.3 + 18%.(-32)

{

WE THEReFore HAve (990, (8%) = 990X +483FY with X=7, ¥=~37.

({é) THE APPROPR(ATE APPLICATIONS ©F THE DAT Give (S The NeEXT &SQuATIONS:

276392 = 63. 40 + 12
63 =12.5+ 32
10 = 3.4 +0.

THis shows  (2532,63)= (63, 02) = (42/3)=(3,°) = 3. NEXT [ USNG THE AboE

ERUATIONS  WE ilt (WRITE (263%63) AS A LineAR (ComBinATioN ©F 2532 Amd 63.

To Do THKS ; WE OBSERvVE

(253263) = 3 = 63 —12.5 = 63— (2532-6342) 5= (3 -2532.5 +63.200

We ThereFore HAve  (2532,63)= 2522(~5) + 63.2°1 |

Exercise: TFud x\v,z2 & £ Svch THAT (990 ) 18%F, 512) = 990 x +183Y + 542 2

Solution:

BY THe PRevious EXERCiSE , we woTE (cﬁo; 189) = 41 = 990-7 + 987 (-37).

ow, we oBseRVE [ 990,183 542) = [ (999(8%),512) = (11, 512).

BY THe DAT WE HAVE The TForlowiNE  EQUATIONS !




S12 = Hb. 19 + 6
M = 6.1 + &5
6 = 5-1 + 1
1 :4-4*{—0

THis shows kT (542141) = (116) =(6,5) = (54) =(19) = 1.
MoteoveR , WE CAN WR{TE
1=6 -5 = 6—(11-6) = 6.2 —a1
= (512 <KoY 2 — 41 = 5422 +19. (-93)
WE THeReEEORE HAVE
(990, (87, 512) = (12,512) = 4 = 5422 +11. (~93)
542, 2 + (490. F L1182 [»3-1)) . (-93)
(2.2 +990. 3. (-93) + 182.32%.93
990. (-651) + 182, 3441 + 542 2.

THEN [ WE cAN THKE X=-651, V=3947 Amd 2= 2.

The Dio?hanﬁihe Equation ax*bjzc

I T IS CuosToMARY To APPLY THE TeRM DIiOPHANTING EQuATioN TO ANY EQuATion
N ONE OR MoRe ONKNOWNS THAT g TO BE SOoved (N THe INTEGERS . THE SiMDLesT
TYPE oF TDioPhANTINE EBUTION THAT WE SHALL ConsSineR (S THE LineAR Dio PHANTINE
EGUATION in Two ONKNOWNS : AX+by =Cc WHERE Qb c & FZ with a A b NoT
PoTH 9eRo. A Solution oF THIS EQUATION iS A PATR oF INTE GERS (xo,'da) Sucy
THAT 3ot byo = c. CowditionsS For SolUBILITY AW Finding THE SoLuTions ,

(F PossieLe | ARE EASY To STATE AS WE WILL SEE N THE TFollowinS THEOREM.

Let a,b,c € Z, a,b not both zero. The linear Diophantine Equation ax + by = ¢ has a solution
if and only if d | ¢, where d = ged(a,b). If zg and yq is any particular solution of this equation,
then all other solutions are given by

+bt ut
T =z =, =yg— — -
otg b Y=Y av

where t is an arbitrary integer.




Exercise: WHiCH oF THE FollowinGg DioPHANTINE EQUATIONS CANNOT B Solueh )

(i) 6xX+ 51y = 22 (<) 33X +14Y = #5 (cii) A4x+ 35y = 93

Solukion:

LN ORDeR To DeTERMINE [E THE GileN DIOPHANTINE EQUATIONS CAN or NOT B
SoLVED | WE WilL 0SE THe THEOReM ABove. SinE  (6,51)= 3 Aw 3 Dogs AT Divide
22 | THE EQUATION OX+51Y =22 HAS NO iNTE6ERS SoluTioNs. SiMmiLARLY, WE HAVE
THAT (14,35) = F AW 93 is NoT A MUTRE OF 7. THUS, THE EQUATION

14X+ 35 Y =93 NEITHER HAS iNTEGer Sdutions . HoweveR , we oRrserve (aa,/z/)=4.

Awp 4/445. ALeNCG, The €QuATIoN 33X + 14 Y = 115  HAs (NTeGeR Solurions,

Exercise: DeTcRMINE ALL SOLUTIoNS 1N THE [(NTECERS o &=

221 X + 357 = 11.

Solution:
TN ORDER TO SolvE THE &ijeN EQUATIoN g Wil (SE THE THsOReM ABove.

TiRQTLY, APPLYING THe & A. we Tws (221 35) =4. =N FAcT | By T¥E

DAT W& HAE

MDD so, (22435)=(36,11) = (11,2)=(2,1) = (1,0) = 1.
THEN, SINCE  (221,35) =41 AND 1|1 | THE EGQUATION 221X+ 35Y =11 HAS
{NTEGER SoluTioNS. Te OBTAIN The NTEGeR 1 A< A LinveAR CoMBiwA TroN OF

224  AND 35, WE WORk BACKWARD THRoGH THE PREVIVS CALCuLATioNS | AS



Follow$s ;

) = M=2.6= 411=(35 ~44.3).5 =41— 35.5 + 4115 — 46.41 - 35.5
16 - [‘LM— 35-6) — 355 = 46.221 — 35.96—35-5 = 221.46 + 35.(-191)

UPon MULTIPLYING THIS LAsT RELATION BY 11, We GsT1

1.4 = q4. (214. 16 +35. (»qo5)>
221. (16-44) + 35‘-(41(—705)) — 224.436 + 35. C—’I’Mr))

11

Il

|

THIS HMEANS THAT X=436 AnN> Y= —1111  PRovidbeE onNE SoluTiony TO QYR
DioPHANTI N EQuéATon - Elen HMores , AL OTHER SoluTions Ars ExPressed BY

X= 476 + 35 £+ = 176 + 35.%
1 WNhere #c#£.
Y= —MMmM — 224 £ = — 1141 — 224 &,
4

Exercise: DeTeRMiNE ALL SOLUTIONS N THE POSITIVE (NTEGERS OF THE FollowiNG EQUATIONS:

(<) 18X+ 5Y = Ys . (cid) 123X+ 360Y = 99.
(i) BUX +21 = 906. (iv) 158x —52y=3.
( /L) Solution: In order to determine all solutions in the positive integers of the given Diophantine

Equation, we will use Theorem 1 to find all integer solutions and then, we will see which of
those solutions give us positive integer solutions.
Applying the Euclidean’s Algorithm to the evaluation of ged(18,5), we find that ged(18,5) = 1.

In fact,
18 = 5-3+4+3
5 = 3-1+42
3 = 2-1+1
2 = 1-240

So, since ged(18,5) = 1 and 1 | 48, the equation 18z + 5y = 48 has integer solutions. To obtain
the integer 1 as a linear combination of 18 and 5, we work backward through the previous
calculations, as follows:

1 = 3-2=3-(5-3)=2-3-5=2-(18-5-3)—5=2-18+(-7)-5.
Upon multiplying this last relation by 48, we get
48 =18-96 + 5 - (—336).

This means that z = 96 and y = —336 provide one integer solution to our Diophantine equation.
Even more, by Theorem 1, all other integer solutions are expressed by

T=96+5-¢t, y=-336-18-t,

where t is an arbitrary integer.

Now, since we are looking for positive integer solutions, we need to find those ¢t € Z such
that > 0 and y > 0. This means that 96 + 5¢ > 0 and —336 — 18t > 0. Equivalently,
—96/5 < t < —56/3 and so t = —19. Then, the only positive integer solution of the equation is
2=96+5-(—19) =1 and y = —336 — 18- (—19) = 6.




Solution: In order to determine all solutions in the positive integers of the given Diophantine
Equation, we will use Theorem 1 to find all integer solutions and then, we will see which of
those solutions give us positive integer solutions.

Applying the Euclidean’s Algorithm to the evaluation of ged(18,5), we find that ged(54,21) = 3.
In fact,

54 = 21-2+412

zl = 12140
12 = 9:343
9 = 3-3+40

So, since ged(54,21) = 3 and 3 | 906, the equation 54z + 21y = 906 has integer solutions.
To obtain the integer 3 as a linear combination of 54 and 21, we work backward through the
previous calculations and we get:

3=54-2+421-(-5).
Upon multiplying this last relation by 906/3 = 302, we get
906 = 3-302 =54-(2-302) +5- ((—5) - 302)54 - 604 + 21 - (—1510).

This means that z = 604 and y = —1510 provide one integer solution to our Diophantine
equation. Even more, by Theorem 1, all other integer solutions are expressed by

T =604+7 ¢ y=—1510 — 18 - ¢,

where ¢ is an arbitrary integer.

Now, since we are looking for positive integer solutions, we need to find those ¢ € Z such
that z > 0 and y > 0. This means that 604 + 7t > 0 and —1510 — 18¢ > 0. Equivalently,
—604/7 < t < —755/9 and so t € {—86,—85, —84}. Then, the only positive integer solution
(z,y) of the equation are (16,2), (9,20) and (2, 38).

Solution: In order to determine all solutions in the positive integers of the given Diophantine
Equation, we will use Theorem 1 to find all integer solutions and then, we will see which of
those solutions give us positive integer solutions.

Applying the Euclidean’s Algorithm to the evaluation of gcd(123,360), we find that
gcd(123,360) = 3. In fact,

360 = 123-2+4114
123 = 114-1+4+9
114 = 9-12+4+6

9 = 6:-1+3

6 = 3240

So, since ged(360,123) = 3 and 3 | 99, the equation 123z + 360y = 99 has integer solutions.
To obtain the integer 3 as a linear combination of 123 and 360, we work backward through the
previous calculations and we get:

3 =123-41+ 360 (—14).
Upon multiplying this last relation by 99/3 = 33, we get
99 = 123 - 1353 + 360 - (—462).

This means that z = 1353 and y = —462 provide one integer solution to our Diophantine
equation. Even more, by Theorem 1, all other integer solutions are expressed by

2 =1353+120 ¢, y=—462 — 41 -t,

where ¢ is an arbitrary integer.

Now, since we are looking for positive integer solutions, we need to find those ¢ € Z such
that > 0 and y > 0. This means that 1353 + 120t > 0 and —462 — 41¢ > 0. Equivalently,
—1353/120 < t < —462/41 and so there is no integer ¢ verifying these conditions. Consequently,
the equations has no positive integer solutions.



( [V) Solution: In order to determine all solutions in the positive integers of the given Diophantine
Equation, we will use Theorem 1 to find all integer solutions and then, we will see which of
those solutions give us positive integer solutions.

Applying the Euclidean’s Algorithm to the evaluation of ged(158,—57), we find that
gcd(158, —57) = ged(158,57) = 1. In fact,

158 = 57-2+44

57 = 44-1+13
4 = 13-3+5
13 = 5-2+3
5 = 3-1+2
3 = 2-1+1
2 = 2-1+0

So, since ged(158,—57) = 1 and 1 | 7, the equation 158z — 57y = 7 has integer solutions. To
obtain the integer 1 as a linear combination of 158 and 57, we work backward through the
previous calculations and we get 1 = 158 - (—22) + 57 - 61. Then,

—1=158-22+ (—57) - 61.
Upon multiplying this last relation by —7, we get
7 =158 (—154) + (=57) - (—427).

This means that x = —154 and y = —427 provide one integer solution to our Diophantine
equation. Even more, by Theorem 1, all other integer solutions are expressed by

T = —154 — 57 - t, y = —427 - 158 - t,

where ¢ is an arbitrary integer.

Now, since we are looking for positive integer solutions, we need to find those ¢ € Z such that
z > 0 and y > 0. This means that —154 — 57 -t > 0 and —427 — 158 - ¢ > 0. Equivalently,
t < —154/57 and t < —427/158. So, t < —3. Consequently, there are infinitely many positive
integer solutions.

Exercise: Tiud THE NUMBER OF MEN | WOMEN ANG CHILDREN N A ComPAny OF 20 PERSoNS
i(F ToGeThER THey PAY Qo oINS, Ehcy MiN PAYING 3| EhcH WoMAN 2 Awd Ehch

CHiLdren 4/2.

Solution: Let M, W and C' denote the number of men, women and children in the company
respectively. We observe that 0 < M, W, C' < 20 and

M+ W +C =20, 1)
1
M +2W + 2C = 20. @)

Consequently, from (1) and (2) we get
1
2. (31\1+2I/V+§C) — (M +W +C) =40 - 20.

That is, 5M + 3W = 20. This means that to solve our problem, we need to find all possible
solutions of the Diophantine equation 50 + 3W = 20 where 0 < M, W < 20.

Since ged(5,3) = 1 and 1 | 20, by Theorem 1, the equation 5M +3W = 20 has integer solutions.
To obtain the integer 1 as a linear combination of 5 and 3, we observe:

1 = 5-(-1)+3-2.




Upon multiplying this last relation by 20, we get
20 =5-(—20) + 3 - 40.

This means that M = —20 and W = 40 provide one integer solution to our Diophantine
equation. Even more, by Theorem 1, all other integer solutions are expressed by

M =-20+3-t, W =40-5-t,

where ¢ is an arbitrary integer.

Now, since we are looking for positive integer solutions 0 < M, W < 20., we need to find those
t € Z such that 0 < M < 20 and 0 < W < 20. This means that 0 < —20 + 3 -t < 20 and
0 <40 -5t < 20 . Equivalently, 20/3 < t < 40/3 and 4 < t < 8. so, t = 7. Then, the only
positive integer solution (M, W) of the equation is (1,5). Hence, M =1, W =5 and so C' = 14.
Consequently, there are 1 man, 5 women and 14 children in the company.

Exercise: (F Q Mmbd b ARE CoPRIME Positive inTeseRS | PRoVE THE E£QuATioN 3 X-bY=C

HAS INFiNITELY MANY SOLUTIONS N THE PosiTive [NTEGeRS .

Solution: Since ged(a, —b) = ged(a,b) = 1 and 1 | ¢, by Theorem 1, the equation ax — by = ¢
has integer solutions. Then, there exist integers xg and yy such that azg — byg = c¢. Even more,
by Theorem 1, all other integer solutions are expressed by

r=x9—b-t, y=1yg—a-t,

where t is an arbitrary integer.

Now, since we are looking for positive integer solutions, we need to find those ¢ € Z such that
x > 0 and y > 0. This means that xo —b-¢t > 0 and yo — a -t > 0. Equivalently, as a,b are
positive, ¢ < %2 and t < yEo So, we can take every integer ¢ such that ¢ < min{%ﬂ, %1 In fact,
if t < min {2 %} then t < %2 and ¢t < & which implies that zg — bt > 0 and yo — at > 0, i.e.,
x > 0 and y > 0. Consequently, there are infinitely many positive integer solutions by choosing
§ < mnim {40, M




