

Maud L. Menten

Biomolecules

@amoebasisters

BIOMOLECULE BROS!

Carbohydrates

Carbohydrates

Picture from Vollhardt & Schore

Hydrated carbons $C_n(H_2O)_n$

Nucleic acids, fats, cellulose, fibers, starch, "table sugar," antibiotics, and other biological molecules

Naming

The simplest carbohydrates are the sugars or saccharides. They constitute polyhydroxy aldehydes (aldoses) or polyhydroxy ketones (ketoses); they form oligomers by oxygen bridges (hence di-, tri-, tetrasaccharide, etc.).

Chain length: Triose, tetrose, pentose, etc.

Monosaccharides

Picture from Vollhardt & Schore

Most sugars are chiral and occur enantiomerically pure. Simplest case, one stereocenter:

D and L are an older nomenclature (predates the knowledge of the absolute configuration of glyceraldehyde). The dextrorotatory enantiomer was called D, the other L. Later, D was found to be R, L therefore S.

In almost all natural sugars, the stereocenter furthest away from carbonyl (drawn at the top) has the same absolute configuration as D-glyceraldehyde: "D-sugars"

Picture from Vollhardt & Schore

Rules for arranging the Fischer stencil: Carbonyl on top, places bottom C*OH on the right in the D sugars.

MODEL BUILDING Diastereomeric 2,3,4-Trihydroxybutanals: **Erythrose (2 Enantiomers) and Threose (2 Enantiomers)** Diastereomers Enantiomers Enantiomers CHO CHO CHO CHO HO^{-S} H^{-R} HO--OH HO S H^{-R} HO^{-S} OH-CH₂OH CH₂OH CH₂OH CH₂OH 2R,3R25,35 2S,3R2R,3S D-(-)-Erythrose L-(+)-Erythrose D-(-)-Threose L-(+)-Threose

Mirror

plane

Mirror

plane

Cyclic Hemiacetal Formation by Glucose

Acetals and Hemiacetals

Acetals and Hemiacetals

Pictures from Vollhardt & Schore

Other ways of drawing cyclic structures

Best are conformational pictures

Mutarotation: Change in observed optical rotation when a sugar molecule equilibrates with its anomer.

all-equatorial

Reactions of carbohydrates

Functional groups in monosaccharides are: Alcohol and carbonyl groups.

All the reactions characteristic of alcohols, aldehydes and ketones take place.

Higher Saccharides

Sucrose: Disaccharide derived from glucose and fructose

Picture from Vollhardt & Schore

Sucrose, a β -D-fructofuranosyl- α -D-glucopyranoside

Cellulose: Glucose polymer with β–acetal links

Picture from Vollhardt & Schore

Molecular weight 500,000 (~3000 units of glucose; 1 unit = 178 molecular weight. Used in cell wall material: Rigid structure due to multiple hydrogen bonds.

Wood is largely cellulose and lignin. Paper and cotton are nearly pure cellulose.

Cell walls rely on cellulose for rigidity

$(CH_2O)_n$

$(CH_2O)_n$

Pictures by ChloeSmith08 on Wikimedia

Glycoconjugates

Oligosaccharide(s)+protein = glycoprotein Oligosaccharide(s)+lipid = glycolipid

Hexose derivatives

Figure 7-9
Lehninger Principles of Biochemistry, Seventh Edition
2017 W. H. Freeman and Company

Reducing sugars

- \triangleright Reducing sugars are those capable of reducing cupric ion (Cu²⁺)
- Resulting sugars are a mixture of carboxylic acids

- Only anomeric carbons can be reduced
- The formation of a glycosidic bond makes the sugar non reducing
- Reducing end

Picture from Vollhardt & Schore

Nonreducing Disaccharides

- Two sugar molecules can be also joined via a glycosidic bond between two anomeric carbons.
- The product has two acetal groups and no hemiacetals.
- There are no reducing ends; this is a nonreducing sugar.

Polysaccharides can be:

- homopolysaccharides (one monomer unit)
- heteropolysaccharides (multiple monomer units)
- > linear (one type of glycosidic bond)
- branched (multiple types of glycosidic bonds)

Storage

Structural elements

Polysaccharides do not have a defined molecular weight.

No template is used to make polysaccharides.

Monomer units are added and removed as needed by the organism.

Polysaccharides folding

3D structure:

- More rigid subunits with covalent bonds
- > Weak interactions stabilise the structure
 - Hydrogen bonds
 - Hydrophobic/phyllic effect
 - o Charge repulsion/attraction

Extracellular matrix (ECM)

Gel-like material that keeps cells together and allows diffusion of nutrients and oxygen.

It's composed of heteropolysaccharides + fibrous proteins

ECM – Glycosaminoglycans

Linear polymers of repeating disaccharide units

One monomer is either:

 N-acetyl-glucosamine or N-acetylgalactosamine

Negatively charged

- o uronic acids (C6 oxidation)
- sulfate esters

Extended hydrated molecule

o minimizes charge repulsion

Polysaccharides and oligosaccharides are information carriers

- Intra/extra cellular
- > Transport
- Localization
- Destruction
- Signal
- > Immune response

Proteoglycans

- Present on the cell surface or ECM
- Joined directly to a membrane or secreted protein
- Electrostatic bond with the protein
- Covalent bond with the protein
- Major components of ECM

Proteoglycans

- > Syndecan are attached to a transmembrane protein
- Glypican are connected to the membrane through a lipid anchor

Glycoproteins

- Covalent bond with a protein
- \geq 1 oligosaccharides
- Plasma membrane, ECM, blood, organelles
- Highly specific binding sites

Glycosphingolipids

- Plasma membrane components (the oligosaccharide is the hydrophilic part)
- Highly specific binding sites
- Signal transduction

Lectins

- > Cell-cell recognition
- Signalling
- **>** Adhesion
- > Targeting

Lectins

Figure 7-37
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Lectins

Figure 7-32
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company