Primes and the Fundamental Theorem of Arithmetic

THEOREM: LET $\partial \in \mathbb{Z}$, $\partial \notin \{-1,0,1\}$. THEN, ∂ CAN BE EXPRESSED AS A PRODUCT OF PRIMES. THIS REPRESENTATION IS UNIQUE, APART FROM THE ORDER IN WHICH THE FACTORS ECCUR AND THE SIGN. WHEN $\partial = \pm \prod_{j=1}^{r} p_j^{rj}$ where each $r_j > 0$ and j = 1 is written in Canonical FORM.

EXERCISE 1: LET DEZ, D>1 . PROVE THAT 2 is A SQUARE IF AND ONLY IF IN THE CANONICAL FORM OF 2 ALL THE EXPONENTS OF THE PRIMES ARE EVEN INTEGERS.

Solution: Suppose first that 2 is A Sauare then, there exists meze Such that $a = m^2$. Since $a \neq \{0, 1\}$ we observe $m \notin \{-1, 91\}$. Then, by The Fundamental theorem of Arithmetric, there exists primes β_i (1414k) AND Positive integers T_i (1414k) such that $M = \pm \frac{k}{11} \beta_j^{r_j}$. We thus HAVE $a = m^2 = \left(\frac{k}{11} \beta_j^{r_j}\right)^2 = \frac{k}{11} \beta_j^{2r_j}$. This shows All exponents in the canonical Form of 2 Are even. Conversely, suppose All the exponents of the primes jis A prime, $\beta_i \perp \beta_j$ if $i \perp j$ (14114k). And $T_i > 0$ is even (1414k). Thus, For every j (1414k), there exists $t_j \in N$ such that $T_i = 2t_j$. Therefore, $a = \frac{k}{11} \beta_i^{r_j} = \frac{k}{11} \beta_i^{2t_j} = \frac{k}{11} (\beta_j^{t_j})^2 = \left(\frac{k}{11} \beta_j^{r_j}\right)^2$. Since $\frac{k}{11} \beta_i^{t_j} \in \mathbb{F}$

WE THUS HAVE 2 is A SQUARE. THE RESULT FOLLOWS.

EXERCISE 2: AN INTEGER IS SAID TO BE SQUARE - FREE IF IT IS NOT DIVISIBLE BY THE SQUARE OF ANY INTEGER GREATER THAN 1. PROVE : (i) AN INTEGER M>1 IS SQUARE - FREE IF AND ONLY IF M CAN BE FACTORED INTO A PRODUCT OF DISTINCT PRIMES.

(ii) EVERY INTEGER M>1 is THE PRODUCT OF A SQUARE-FREE INTEGER AND A PERFECT SQUARE.

SOLUTION: LET MEN, M>1. THEN, BY THE F.T.A, M CAN BE WRITTEN IN CANONICAL FORM AS FOLLOWS: $m = \frac{k}{\prod_{j=1}^{k} p_j}$ where $p_1 < p_2 < \dots < p_k$ ARE ALL PRIMES AND FIEN (14JER) SUPPOSE THERE EXISTS & (14lek) SUCH THAT $\Gamma_{\ell} \ge 2$. THEN, $M = \left(\frac{k}{\prod_{j=1}^{r}} p_{j}^{\Gamma_{j}}\right) p_{\ell}^{\Gamma_{\ell}-2} p_{\ell}^{2}$ Which implies that $p_{\ell}^{2} m_{j}^{2}$ CONTRADICTING THAT M is SQUARE - FREE. THEREFORE, FOR EVERY j (15j5k), IT MUST BE Fi=1. SO, M is A PRODUCT OF DISTINCT PRIMES. CONVERSELY, WE PROCEED BY SHOWING THE CONTRARECIPROCAL PROPOSITION IS TRUE. SO, ASSUME THAT M is NOT SQUARE-FREE. THEN, IT ADMITS A DIVISOR OF THE FORM d2 WHERE d>1. THEN, BY EX. 1, IN THE CANONICAL FORM OF d2, ALL THE EXPONENTS OF THE PRIMES ARE EVEN INTEGERS. SINCE d>1, THERE MUST EXIST A PRIME of SUCH THAT q2 | d2. THEN, AS q2 / d2 AND d2/M WE THUS HAVE q2 / M. THIS SHOWS THAT M & Pr. pr. ph FOR DISTINCT PRIMES pj (1=j=k). WE CONCLUDE THAT IF THE PRIMES OCCUPING IN THE PRIME FACTORIZATION ARE DISTINCT THEN M is SQUIPE-FREE. THIS SHOWS THAT (i) HOLDS. WE NEXT PROVE THE LATTER PART OF THE EXERCISE. LET ME NI M>1. LET $M = \prod_{j=1}^{k} f_{j}^{r_{j}}$ BE THE CANONICAL FORM OF M. SINCE f_{j} is A Positive integer, By the Algorithm Division THEOREM, For every j (14jek) THERE EXIST NJ, BJ EN SUCH THAT IJ= 2×j+BJ WHERE BJE for 14. CONSIDER NOW THE SETS A = { j : b = 0 } AND B = { j : b = 1 }. Note THAT AUB= {1,..., by

AND
$$A \cap B = \phi$$
. IN ADDITION,
 $M = \prod_{j=1}^{k} \beta_{j}^{r_{i}} = \prod_{j \in AUB} \beta_{j}^{2N_{j}^{i}+\beta_{j}} = \left(\prod_{j \in A} \beta_{j}^{2N_{j}^{i}+\beta_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\beta_{j}}\right) = \left(\prod_{j \in A} \beta_{j}^{2N_{j}^{i}+\beta_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\gamma_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\gamma_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\gamma_{j}}\right) = \left(\prod_{j \in A} \beta_{j}^{2N_{j}^{i}}\right) \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}}\right) \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\gamma_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\gamma_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}+\gamma_{j}}\right) \cdot \left(\prod_{j \in B} \beta_{j}^{2N_{j}^{i}}\right) \cdot \left($

SHOW THAT IT CAN BE WRITTEN IN THE FORM $M = \partial^2 \cdot b^3$, with $\partial_1 b \in \mathbb{N}$.

<u>SOLUTION</u>: LET ME IN SUCH THAT M is SQUARE-FULL. BY FTA, M CAN BE WRITTEN AS A FINITE PRODUCT OF PRIMES. LET $M = \prod_{j=1}^{k} p_j^{\alpha_j}$ BE THE CANONICAL FORM OF M. SINCE M is SQUARE-FULC, FOR EVERY j (155k) WE HAVE $p_j^2 \mid m$. THIS SHOWS THAT $\alpha_j \ge 2$ FOR EVERY j (156k). As $\alpha_j \in N$ (156k), by THE DAT, THERE EXIST $q_j, r_j \in N$ such THAT $\alpha_j = 2q_j + r_j$ with $r_j \in \{0, 1\}$. LET CONSIDER THE SETS $A := \{j: r_j = 0\}$ AND $B := \{j: r_j = 1\}$. Note $A \cap B = \emptyset$ AND $A \cup B = \{1, 2, \dots, k\}$. WE ALSO NOTICE, FOR EVERY $j \in B$, $\alpha_j = 2q_j + 1$ AND $\alpha_j \ge 3$. THEN, $\alpha_j - 3 = 2(q_j - 1) \ge 0$. WE THEREFORE HAVE

$$M = \frac{\pi}{j \in A \cup B} \begin{vmatrix} \alpha^{i} j \\ i \end{vmatrix} = \left(\frac{\pi}{j \in A} \begin{vmatrix} \gamma^{i} j \\ j \end{vmatrix} \cdot \left(\frac{\pi}{j \in B} \begin{vmatrix} \gamma^{i} j \\ j \in B \end{vmatrix} \right) = \left(\frac{\pi}{j \in A} \begin{vmatrix} \gamma^{2} \gamma^{i} j \\ j \in B \end{vmatrix} \cdot \left(\frac{\pi}{j \in B} \begin{vmatrix} \gamma^{2} \gamma^{i} j \\ j \in B \end{vmatrix} \right) \left(\frac{\pi}{j \in B} \begin{vmatrix} \gamma^{i} j \\ j \in B \end{vmatrix} \right) = \frac{\pi}{j \in A} \left(\left(\gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \cdot \left(\frac{\pi}{j \in B} \left(\gamma^{i} \gamma^{i} \gamma^{i} \gamma^{i} \right)^{2} \right) = \frac{\pi}{2} \cdot \beta^{2} \cdot \beta^{3} \quad \text{where}$$

 $\partial_{i=} \prod_{j \in A} p_{j}^{q_{j}} \cdot \prod_{j \in B} p_{j}^{q_{j-1}} \in \mathbb{N} \text{ and } b_{i=} \prod_{j \in B} p_{j} \in \mathbb{N} \cdot \text{ the result follows.}$ $\underline{EXERCISE \ 4:} \text{ Show that every positive integer which has remainder 2}$ In the Division by 3 has A prime factor with this property As well.

Solution: Let Me N. By the Division Algorithm Theorem And the Assumption, M=3942For some q.e.N. Since M>1, we observe there exists A prime P Such that plm. Note that $3 \neq P$. IN FACT, if $3 \mid P$ then $3 \mid M$ and so $3 \mid 2$, A contradiction. Thus, By the ADT and since P is an Arbitrary prime, we have every prime factor of m is either of the form 3k+4 or 3k+2 for some $k \in N$. Now, suppose every prime Factor of m is A prime of the form 3k+4. By the FTA, M>4 is a Product of Primes numbers which are all of the Form 3k+4. That is, there exist $x_i > 0$, $k_j > 0$ and primes p_j ($1 \le j \le k$) such that m = 3k+4. We that m = 3k+4. We thus Have 3l+4 = m = 3q+2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this Shows that $3 \mid 1$, A contradiction, Hence, it Cannot Harpen that every prime Factor of m is A Prime of the form 3k+4. There exists A prime 14ve = 3l+4 = m = 3q+2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this Shows that $3 \mid 1$, A contradiction, Hence, it Cannot Harpen that every prime Factor of m is A Prime of the form 3k+4. Therefore, there exists A prime 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, this 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, then l = 1, there exists A prime 14ve = 3l + 1 = m = 3q + 2 which implies that 3(l-q) = 4. As $l-q \in \mathbb{Z}$, then l = 1, there exists A prime 14ve = 3l + 1 = m = 3q + 2 which 3l + 1. Therefore l = 1 for 3l + 4. Therefore l = 1 for n = 1 for n = 1. As l = 1, thence l = 1.

EXERCISE 5: GIVEN THAT PYM FOR ALL PRIMES P & 3/m, SHOW THAT M>1 is either A prime or the Product of Two Primes.

SOLUTION: Assume to the contrary that M > 1 contains at LEAST THREE PRIME FACTORS. THAT is, $M = \frac{k}{j=1} \frac{1}{j=1} \frac{1}$ $M = \sqrt[3]{m} \sqrt[3]{m} \sqrt[3]{m} \sqrt{p_1 \cdot p_2 \cdot p_3} \ll \frac{R}{j=1} p_j = M$ Which is A contradiction. Then $T \leq 3$. Thus, $T \in \{1, 2\}$. So, M is either A prime or A Product of 2 primes.

EXERCISE 6: PROVE THAT VP is IRRATIONAL FOR ANY PRIME P>1.

Solution: Assume JP is RATIONAL FOR SOME P>1. THEN, THERE EXIST AIDEN SUCH THAT JP = $\frac{3}{6}$. WITHOUT LOSS OF GENERALITY, WE CAN ASSUME gcd(ab)=1. THEN WE HAVE $Pb^2 = a^2$. So $P|a^2$ which implies that P|a. Then, a=PkFOR SOME $k \in N$. THEN, $Pb^2 = a^2 = (Pk)^2 = P^2k^2$ and $P(b^2 - Pk^2) = 0$. Since P>1 IT MUST BE $b^2 = Pk^2$. THIS SHOWS THAT $P|b^2$ AND SO P|b. NOW, SINCE P|aAND P|b WE GET P/gcd(ab) = 1 which is A contradiction AS P>1. HENCE JP is iRRATIONAL.

EXERCISE 7: IF 2 70 AND No is RATIONAL, SHOW THAT NO MUST BE AN INTEGER.

<u>SOLUTION</u>: Let a > 0. Suppose that $\sqrt[m]{a}$ is Rational. Then, there exist rise and Such that $\sqrt[m]{a} = \frac{\Gamma}{S}$ and $\gcd(r_1s)=1$. This MEANS $S^{m}. a = \Gamma^{m}$. Since $\gcd(r_1s)=1$ we have $\gcd(r_1^m s^m)=1$. So, since $\Gamma^{m}|\Gamma^{m}$ we have that $\Gamma^{m}|S^{m}.a$ which implies $\Gamma^{m}|a$. Then, $\Gamma^{m}.k=a$ for some $k \in \mathbb{N}$. Then, $\Gamma^{m}=S^{m}.a=S^{m}.\Gamma^{m}.k$ and $\Gamma^{m}(1-S^{m}k)=0$. As $\Gamma^{m}>0$ we must have $S^{m}k=1$. This shows that $S^{m}=k=1$ and $S_{1}, S=1$ (if s>1 then $S^{m}>1, A$ contradiction). Thus, $\sqrt[m]{a}$ is irrational.

EXERCISE 8: FOR M>2, SHOW THAT MM is IRRATIONAL.

SOLUTION: LET MEN, M>2. SUPPOSE THAT $\sqrt[n]{m}$ is RATIONAL. THEN, BY EX.7, $\sqrt[n]{m}$ Must be AN INTEGER. Assume $\sqrt[n]{m} = 2$ FOR SOME 270. THEN, $2^{M} = M = \binom{M}{4} < \sum_{k=0}^{M} \binom{M}{k} = 2^{M}$ BY THE BINOMIAL THEOREM. SO, 2" L 2" IMPLIES THAT 222. THUS, 2=1. THIS MEANS THAT M=2"=1"=1, A CONTRADICTION. THEREFORE, "I'M IS NOT PATIONAL.

EXERCISE 9: SHOW THAT THERE ARE INFINITELY MANY PRIMES.

SOLUTION:

(i) SUPPOSE THERE ARE FINITELY MANY PRIMES p_{j} (14j4m) and let p_{m} be the LARGEST ONE. CONSIDER THE INTEGER N:= Pm!+1. SUPPOSE THERE EXIST j (14j4m) such that $N = p_{j}$. Then, $p_{j}|N$ AND $p_{j}|Pm!$ implies that $p_{j}|1$, A contradiction. This shows that N is not in our list of PRIMES $p_{1}, p_{2}, ..., p_{m}$. WE thus have that N is Composite. As N > 1, there exists k (14ksm) SUCH that $p_{k}|N$. Since p_{k} is one of the factors of $p_{m}!$ we also have $p_{k}|Pm!$. This Shows that $p_{k}|(N-pm!)$ and so, $p_{k}|1$, which is A contradiction As $p_{k} > 1$. Therefore, There ARE INFINITELY MANY PRIMES.

EXERCISE 10: PROVE THAT IF M>2 THEN THERE EXISTS A PRIME P SUCH THAT MLPLM!. <u>SOLUTION</u>: LET M>2. WE CLAIM THAT M < M! - 1 FOR EVERY $M \ge 3$. TO PROVE OUR CLAIM WE PROCEED BY INDUCTION. IF M=3 THEN 3! - 1 = 6 - 1 = 5 > 3. Assume NOW h! - 1 > hFOR SOME $h \in N_1$ h > 3. THEN, (h+1)! = (h+1) h! > (h+1)(h+1) > (h+1).2. THIS SHOWS THAT (h+1)! - 1 > 2(h+1) - 1 = 2h + 1 = (h+1) + h > h+1. THEN, BY THE PMI, THE INEQUALITY HOLDS FOR ALL MEN, $M \ge 3$. THIS PROVES OUR CLAIM. WE NOW OBSERVE M < M! - 1 < M! FOR M > 2. IF M! - 1 is prime we are done. Suppose Next THAT M! - 1 is not a prime. Since M! - 1 > 1THERE EXISTS A PRIME P SUCH THAT P | M! - 1. THEN P < M! - 1 < M. Assume $P \le M$. THEN P | M! As P is a Factor of M!. Since P | M! AND P | (M! - 1) we have P | 1 which is A CONTRA Diction. THEN M < P AND ≤ 0 M < P < M! As we wanted to SHOW.

EXERCISE 11: FOR MEN, MON, SHOW THAT EVERY PRIME DIVISOR OF M! +1 is AN ODD INTEGER THAT IS GREATER THAN M.

<u>SOLUTION</u>: SINCE $m \ge 2$ we observe m! is even and so m! + 1 is odd. Then, $2 \neq m! + 1$. This means that every prime divisor of m! + 1 is different to 2. Let P be a prime such that $p \mid m! + 1$. We know that $P \ne 2$ and so P is odd. Assume that $p \le m$. Then $p \mid m!$ and Since $p \mid m! + 1$ we get $p \mid 1$, A contradiction. Hence, $p \ge m$.

EXERCISE (2: Assuming THAT p_m is the M-TH PRIME NUMBER, ESTABLISH THE Following statements: (i) $p_m > 2m-4$ for $m \ge 5$. (ii) NONE OF THE INTEGERS $P_m = \prod_{j=1}^{m} p_j + 4$ is a represent square. (iii) THE SUM $\sum_{j=1}^{m} \frac{4}{p_j}$ is never AN INTEGER.

SOLUTION:

(i) WE PROCEED BY INDUCTION ON M>5. NOTE THAT $p_5 = 11 > 9 = 10 - 1 = 2.5 - 1$. WE NEXT ASSUME THAT $p_h > 2h - 1$ for some h>5. OBSERVE p_h is the h-th prime and it is odd. Then $p_h + 1$ is even which means the next Possible prime is p_{n+2} . Then, $p_{n+1} \ge p_n + 2$. Hence,

$$p_{h+1} \ge p_{h+2} > 2h-1+2 = (2h+2)-1 = 2(h+1)-1$$

THis shows the inequality Holds for hold it is the for h. Therefore, By the PMI The inequality $p_m > 2m-1$ for $m \in N$, $m \ge 5$.

(ii) NOTE THAT $p_{1=2}$. THEN $\prod_{j=1}^{m} p_{j}$ is even and so $P_{m} = \prod_{j=1}^{m} p_{j} + n$ is odd. By the DAT WE OBSERVE $P_{m} = 49_{m} + r_{m}$ FOR SOME $q_{m_{1}}r_{m} \in \mathbb{N}$ and $r_{m} \in \{0, n_{12}, 3\}$. As P_{m} is odd WE HAVE $r_{m} \notin \{0, 2\}$ and so, $r_{m} \in \{1, 3\}$. SUPPOSE NOW THAT $r_{m=4}$. THEN $P_{m} = 4q_{m} + 1$ WHICH IMPLIES $\prod_{j=1}^{m} p_{j} = 4q_{m}$ and so $\prod_{j=2}^{m} p_{j} = 2q_{m}$. THEN 2 $\int \prod_{j=2}^{m} p_{j} f_{m}$ and since 2 is PRIME THERE EXISTS k (26 k m) such that 2) p_{k} and p_{k} is even. This implies that k=1 since $p_{i=2}$ is the only even PRIME number. This is a contradiction since k>1. THEREFORE $r_{m}=3$. Assume now that P_{m} is a Referent Square. Then, there exists to N such that $P_{m}=t^{2}$. Since $t^{2} = P_{m}$ is ond we have that t is odd. Su, t = 2R+1 for some $-R = 4R^{2}+4R$. We thus Have $4(R^{2}+R-q_{m}) = 2$ and since $R^{2}+R-q_{m} \in \mathbb{Z}$, we have 4/2 which is A contradiction. This shows that P_{m} is not A REFERENCE $R^{2}+R-q_{m} \in \mathbb{Z}$, we have 4/2 which is A contradiction. This shows that P_{m} is not A REFERENCE $R^{2}+R-q_{m} \in \mathbb{Z}$.

(iii) SUPPOSE THAT $\sum_{j=1}^{m} \frac{1}{p_{j}}$ is an integer. Then $\sum_{j=1}^{m} \frac{1}{p_{j}} = 3$ for some 3eZ. Let $b := \prod_{j=1}^{m} \frac{1}{p_{j}}$. THEN, we observe $\left(\prod_{i=1}^{m} \frac{1}{p_{i}}\right) = \sum_{j=1}^{m} \frac{1}{p_{j}} = \sum_{j=1}^{m} \frac{1}{p_{j}} = \sum_{j=1}^{m} \frac{1}{p_{j}} \frac{1}{p_{j}}$. Let $k \in \mathbb{N}$, $1 \le k \le m$. Note THAT $P_{k} \mid \prod_{i=1}^{m} \frac{1}{p_{i}}$ and since $a \in Z$, $p_{k} \mid \left(\prod_{i=1}^{m} \frac{1}{p_{i}}\right) \cdot 3$. THAT is, $p_{k} \mid \sum_{j=1}^{m} \frac{1}{p_{j}} \frac{1}{p_{j}}$. RECALL THAT $P_{k} \mid P_{k} \cdot C$ for every $C \in Z$. Then, $p_{k} \mid \prod_{i=1}^{m} \frac{1}{p_{i}}$ for every $j \ne k$. THIS SHOWS THAT $p_{k} \mid \sum_{j=1}^{m} \left(\prod_{i=1}^{m} \frac{1}{p_{i}}\right) \cdot NOW$ we observe $\sum_{j=1}^{m} \left(\prod_{i=1}^{m} \frac{1}{p_{i}}\right) = \prod_{j=1}^{m} \frac{1}{p_{k}} + \sum_{j=1}^{m} \left(\prod_{i=1}^{m} \frac{1}{p_{i}}\right) Which YiELDS$ THAT $p_{k} \mid \prod_{j=1}^{m} \frac{1}{p_{j}}$. Since p_{k} is PRIME, THERE EXISTS $L (1\le k \le m)$, $2 \ne k$. Such THAT $p_{k} \mid p_{k} \mid$