

Amino acids & Proteins

Amino acids

How amino acids got their names

Sources: etymonline.com, wiktionary.org, merriam-webster.com, oed.com, chemtymology.co.uk, bioetymology.blogspot.com

Basic polar Nonpolar Acidic polar Polar

TWITTER: @etymology_nerd INSTAGRAM: @etymologynerd

ΟН

OH

 NH_2

ΌH

ЮH

Amino acids are acidic and basic: Exist as zwitterions

 $pK_{a} = 2-3$ $\begin{array}{c} COOH \\ H_{2}N \\ R \\ R \\ H \\ R \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H_{2}N \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ H \\ R \\ \end{array} \qquad \begin{array}{c} COO \\ H \\ COO \\ H \\ H \\ COO \\ H \\ \end{array}$

Pictures from Vollhardt & Schore

 $pK_a = 9-10$

H₃NCH₂COO-Glycine as a zwitterion

Influence of pH

Figure 3-11

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

$\mathbf{pI} = \mathbf{isoelectric \ point}$ or \mathbf{pH} , the pH at which the net electric charge is 0

Amino Acids: Classification

Common amino acids can be placed in five basic groups depending on their R substituents:

• nonpolar, aliphatic (7)

• aromatic (3)

• polar, uncharged (5)

• positively charged (3)

• negatively charged (2)

A GUIDE TO THE TWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner. In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used.

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerlyatives licence.

Ci

Nonpolar, aliphatic R groups

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Aromatic R groups

Phenylalanine Tyrosine

Tryptophan

Figure 3-5 part 2 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Positively charged R groups

Peptides & Proteins

Peptide = > 1 AA Polypeptides with > 50 AA = protein

Picture from Vollhardt & Schore

AA in a peptide are usually referred to as residues

The peptide bond

Picture from Vollhardt & Schore

The peptide bond

How to Draw the Structure of a Tripeptide

Picture from Vollhardt & Schore

R, R', R", etc. are called the side chains. All stereocenters are assumed to be *S*.

Proteins: Main Agents of Biological Function

Catalysis

- enolase (in the glycolytic pathway)
- DNA polymerase (in DNA replication)

> Transport

- hemoglobin (transports O₂ in the blood)
- lactose permease (transports lactose across the cell membrane)

Structure

- collagen (connective tissue)
- keratin (hair, nails, feathers, horns)

Motion

- myosin (muscle tissue)
- actin (muscle tissue, cell motility)

Primary structure

How to Draw the Structure of a Tripeptide

Picture from Vollhardt & Schore

Secondary structure

Pleated sheets

Picture from Wikipedia

α helix

Picture by <u>A. Lomize</u>

Pleated sheets $-\beta$ configuration

Picture from Vollhardt & Schore

α helix

Picture from Vollhardt & Schore

Tertiary structure

Pictures from Vollhardt & Schore

Tertiary structure

Quaternary structure

Picture from Nelson&Cox

Conjugated proteins

apolipoprotein fosfolipit kolesterol

Picture by Alokprasad84

Picture by Mutlutopuz

Protein structure and function

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Major classes of proteins

Picture from Mr Green

Fibrous protein – Collagen

Collagen is an important constituent of connective tissue: tendons, cartilage, bones, cornea of the eye.

- Each collagen chain is a long Gly- and Pro-rich lefthanded helix.
- Three collagen chains intertwine into a righthanded superhelical triple helix.
- The triple helix has higher tensile strength than a steel wire of equal cross section.
- Many triple-helices assemble into a collagen fibril.

Fibrous protein – Silk Fibroin

AA sequence prevents folding, elongated form

- > Antiparallel β sheet structure
- Small side chains (Ala and Gly) allow the close packing of sheets.

Structure is stabilized by:

- hydrogen bonding within sheets
- London dispersion interactions between sheets

Lehninger Principles of Biochemistry, Seventh Edition 2017 W. H. Freeman and Company

Globular Proteins

Specific arrangement of several secondary structure elements

- \geq all α helix
- \succ all β sheet
- > both
- Motifs can be found as recurring structures in numerous proteins.
- Globular proteins are composed of different motifs folded together.

(a)

Figure 4-16 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Motifs (folds)

(b)

Figure 4-18

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Polypeptide folding

Hydrophobic effect stabilises protein structure. It requires at least 2 levels of secondary structure.

- When together α-helices and β-sheets are generally found in different structural layers.
- Segments adjacent in the primary structure are usually close in the folded structure.
- > β conformations are more stable when slightly twisted in a right-handed sense.
- Some proteins (or parts of them) lack ordered structure disordered proteins.

Life cycle of a protein

- A protein's function depends on its 3D structure.
- Loss of structural integrity with accompanying loss of activity is called denaturation.
- Proteins can be denatured by:
 - ➢ heat or cold
 - ▶ pH extremes
 - organic solvents
 - chaotropic agents: urea and guanidinium hydrochloride

