Congruences

DEFINITION: LET M BE A FIXED POSITIVE INTEGER. TWO INTEGERS 2,6 ARE SAID TO BE CONGRUENT MODULO M, SYMBOLIZED BY 2 = 6 (Mod M) OR SIMPLY, 2 = b if M DIVIDES THE DIFFERENCE 2-6.

- EXERCISE 1: LET MENIMON BE FIXED AND DIDIC EZ. PROVE THE FOLLOWING PROPERTIES HOLD:
- (i) a≡ma
- (ii) if a = mb then b=ma.
- (iii) if DEMB AND DEMC THEN DEMC.
- (iv) if DEM b THEN D+C Embtc For EVERY CEZ.
- (V) IF DEMO THEN D.CEM b.C FOREVERY CEB.
- (vi) iF a = b AND C = d THEN a+c= b+d.
- (Vii) iF DEND AND CENd THEN DCEN bC.
- (Viii) IF a=mb THEN at =mbt FOR ALL REN.
- (ix) $\partial \equiv_{m} \Gamma_{m}(\partial)$ Where $\Gamma_{m}(\partial)$ denotes the remainder in the Division of ∂ by M. Moreover, if $0 \leq \Gamma \leq m$ and $\partial \equiv_{m} \Gamma$ then $\Gamma = \Gamma_{m}(\partial)$.
- $(x) \ \partial \equiv m \ o \quad i \in F \ m | a.$
- (Xi) a = M a+ Mq FOR EVERY q EZ.
- (Xii) SUPPOSE CEN. THEN, DEM b IFF DCEme bC.

SOLUTION: LET MEN AND LET DIDIG dEZ.

(i) NOTE THAT $M \mid O$ AND O = 2-2. THEN, $M \mid 2-2$ which MEANS $2 \equiv m^2$. (ii) IF $2 \equiv m^2$ THEN $M \mid 2-b$. So, $M \mid (2-b) \cdot (-1)$. THEN, $M \mid b-2$. THAT is, $b \equiv m^2$. (iii) IF $\partial \equiv_m b$ AND $b \equiv_m C$ THEN M | a-b AND M | c-b. NOW, WE OBSERVE a-c = a - b + b - c = (a-b) + (b-c) = (a-b) - (c-b). WE THERE FORE HAVE M | (a-b) - (c-b) WHICH YIELDS M | a-c. THIS SHOWS $a \equiv_m c$.

(iv_1v) SUPPOSE $a \equiv mb$. THEN $m \mid a - b$ AND so mk = a - b FOR some $b \in \mathbb{Z}$. Now, NOTE THAT Mk = a - b = a + c - c - b = (a + c) - (b + c) AND THEN, $M \mid (a + c) - (b + c)$. MOREOVER, Mkc = (a - b)c = a - b c AND $M \mid a - b c$. Hence a + c = mb + cAND $a c \equiv mbc$.

 (Vi_1Vii) SUPPOSE $D \equiv mb$ ANC $C \equiv md$. THEN, BY (iV) $D + C \equiv mb + C$ AND $C+b \equiv md+b$. So, BY (iii), $D+C \equiv mb + d$. Similarly, BY (V), $D \subseteq mcb$ AND $bC \equiv mbd$. THEN, BY (iii), $D \subseteq mbc \equiv mbd$.

- (VIII) IMMEDIATELY BY (VIII) ABOVE AND A STRAIGHT FORWARD INDUCTION ARGUMENT.
- (ix) BY THE ALGORITHM Division THEOREM, THERE EXIST UNIQUE KIDE \mathcal{E} such that $\partial = \mathbf{X} \mathbf{M} + \mathbf{b}$ where $\mathbf{0} \leq \mathbf{b} \leq \mathbf{M}$. Then, $\partial = \mathrm{Tm}(\mathbf{a}) = \partial - \mathbf{b} = \mathbf{M} \cdot \mathbf{X}$ And so, $\partial \equiv \mathbf{m} \mathrm{Tm}(\partial)$. MOREOVER, iF $\partial \equiv \mathbf{m} \Gamma$ And $\mathbf{0} \leq \Gamma \leq \mathbf{m}$. Then, $\partial = \Gamma \equiv \mathbf{M} \mathbf{q}$ For some $\mathbf{q} \in \mathbf{Z}$. THAT IS, $\partial = \mathbf{M} \mathbf{q} + \Gamma$ with $\mathbf{0} \leq \Gamma \leq \mathbf{m}$. Since the quotient and the Remainder in the Division OF ∂ By \mathbf{M} Are Unique, it must be $\mathbf{q} = \mathbf{K}$ And $\Gamma = \mathbf{b} = \mathrm{Tm}(\partial)$.
- (x) NOTE D=mO iFF M D-0 iFF M D.
- (xi) NOTE THAT M | Mq. THEN BY (x), $Mq \equiv MO$. BY (i), WE Also HAVE $a \equiv_m a$. THEN, BY (Vi), $a + Mq \equiv_m a + o$. THAT is, $a \equiv_m a + Mq$.
- (Xii) LET CEN. SUPPOSE FIRST $\partial \equiv_{m}b$. THEN $\partial_{-}b \equiv mk$ for some $k \in \mathbb{Z}$. THEREFORE, $\partial c - bc = (\partial_{-}b)c \equiv Mk.c = Mc.k$ AND SO, $Mc | \partial c - bc$. THIS SHOWS $\partial c \equiv_{mc} bc$. CONVERSELY, iF $\partial c \equiv_{mc} bc$ THEN $Mc | \partial c - bc$ AND SO $Mck = \partial c - bc$ FOR SOME $k \in \mathbb{Z}$. THEN, $c(Mk - (\partial_{-}b)) = 0$ AND SINCE $c \neq 0$, it must be $Mk = \partial_{-}b$. We thus have $M | \partial_{-}b$ AND SO, $\partial \equiv_{m}b$.

EXERCISE 2: PROVE EACH OF THE FOLLOWING ASSERTIONS:

- (i) IF DEMB AND M/M THEN DEMB.
- (ii) IF DEMO AND COO THEN COECM CO.
- (iii) IF $\partial \equiv_{m} b$ AND THE INTEGERS $\partial_{1}b_{1}c$ ARE ALL Divisible By d > 0, THEN $\frac{\partial}{\partial t} \equiv_{m} \frac{b}{\partial t}$.

SOLUTION:

(i) IF $\partial \equiv m b$ there is some $k \in \mathbb{Z}$ such that $\partial - b = k.m$. As m/m, we can write M = M.t For some $t \in \mathbb{Z}$. Then, $\partial - b = k.m = k.(mt) = (kt)m$ which yields $m/\partial - b$. We thus have $\partial \equiv m b$.

(ii) SEE EXERCISE 1 (XII).

(iii) Let a_1b_1m be integers ALL Divisible By d > 0. Then, we can write a_1b_1m be integers ALL Divisible By d > 0. Then, we can write a_1b_1m be k_2d_1 , b_1b_2m , k_2d_1 , b_2d_2 . $M = k_3 d$ For some $k_1k_2k_3 \in \mathbb{Z}$. Since $a \equiv mb$, there is some $t \in \mathbb{Z}$ such that $a_1b_2 = t \cdot m$. Then, $k_1 - k_2 = t \cdot k_3$ and so $\frac{a}{d} - \frac{b}{d} = k_1 - k_2 = t \cdot k_3 = t \cdot \frac{m}{d}$ which implies THAT $\frac{a}{d} \equiv \frac{m}{d} \cdot \frac{b}{d}$.

EXERCISE 3: IF a = mb, PROVE THAT gcd (a, m) = gcd (b, m).

<u>SOLUTION</u>: LET $d = \gcd(a_1m)$ AND $d^* = \gcd(b_1m)$. Since $a \equiv_m b$ we know a - b = mkFOR SOME $k \in \mathbb{Z}$. As d/a and d/m we have d/(a - mk) and so, d/b. Then, d/b, d/mimplies that d/d^* . Similarly, if d^*/b and d^*/m then $d^*/mq+b$, that is d^*/a . WE THUS HAVE d^*/d . Since d^*/d and d/d^* we have $d = d^*$. Recall that d > 0, $d^* > 0$.

EXERCISE 4: PROVE THAT 53⁴⁰³ + 103⁵³ is divisible by 39 AND 111³³³ + 333⁴¹¹ is divisible by 7. $\frac{\text{Solution:}}{\text{Solution:}} \quad \text{WE First observe that } 53^{403} + 103^{53} \text{ is divisible by 39 if FF 53^{403} + 103^{53}} \text{ of } 403^{53} \text{ and } 12/53^{403} + 103^{53} \text{ of } 105^{50} \text{ and } 12/53^{403} + 103^{53} \text{ of } 105^{50} \text{ and } 12/53^{403} + 103^{53} \text{ of } 105^{50} \text{ and } 12/53^{403} + 103^{53} \text{ of } 105^{50} \text{ and } 13.$ $\text{As } 53 = 3.17 + 2 \text{ And } 103 = 3.34 + 1 \text{ We HAVE } \text{ BY EX.1 (ix), that } 53 = 2 \text{ And } 103 = 4.5 \text$

EXERCISE 5: FOR M > 1, USE CONGRUENCE THEORY TO SHOW 43/6"+7"

<u>Solution:</u> We will prove that $6^{m+2} + 7^{2m+1} \equiv 43 0$. We observe $6^{m+2} + 7^{2m+1} \equiv 6^m \cdot 6^2 + (7^2)^m \cdot 7 \equiv 43 6^m \cdot 36 + 49^m \cdot 7 \equiv 6^m \cdot 36 + 6^m \cdot 7 \equiv 43 \cdot 6^m \equiv 43 0$. Which Are the Properties we used to prove this? Write them! II

<u>EXERCISE 6:</u> SHOW THAT (-13)^{m+1} = 181 (-13)^{<math>m+1} + (-13)^{m-1} For every MeN.</sup>

<u>SOLUTION:</u> LET $S = \{ M \in \mathbb{N} : (-13)^{m+1} =_{181} (-13)^{m} + (-13)^{m-1} \}$. NOTE THAT $S \leq \mathbb{N}$. OBSERVE $1 \in S$ iff $(-13)^2 =_{161} (-13)^1 + (-13)^{\circ}$ iff $(-13)^2 =_{161} - 12$. Then, NOTE WE HAVE $(-13)^2 - (-12) = 169 + 12 = 161 = 181.1$ which shows $161 | (-13)^2 - (-12)$ AND $(-13)^2 =_{169} - 12$.

THIS IMPLIES THAT
$$1 \in S$$
. Now we Assume hes, for some $h \in N_1 h > 1$. Then,
 $(-13)^{h+1} \equiv_{181} (-13)^h + (-13)^{h-1}$. We Therefore Have
 $(-13)^{(h+1)+1} \equiv_{181} (-13)^{h+1} \cdot (-13) \equiv_{181} (-13)^{h+1} + (-13)^{h+1} =_{181} (-13)^{h+1} + (-13)^{h}$.

THIS IMPLIES THAT 4+1 & S. HENCE, BY THE PRINCIPLE OF MATHEMATICAL INDUCTION, S=IN. THE RESULT FOLLOWS.

EXERCISE 6: PROVE THE ASSERTTIONS BELOW:

- (i) IF 2 is AN ODD INTEGER THEN $\partial^2 \equiv 1$.
- (ii) FOR ANY INTEGER 2, EITHER $\partial^{4} \equiv_{5} 0$ or $\partial^{4} \equiv_{5} 1$. (iii) FOR ANY INTEGER 2, EITHER $\partial^{3} \equiv_{7} 0$, $\partial^{3} \equiv_{7} 1$ or $\partial^{3} \equiv_{7} 6$. (iv) IF THE INTEGER 2 is NOT DIVISIBLE BY 2 or 3, THEN $\partial^{2} \equiv_{24} 1$.

SOLUTION:

(i) SUPPOSE $a \in \mathbb{Z}$ is obd. By the ALGORITHM Division theorem, a = 4q + rwhere $q_1 r \in \mathbb{Z}$ and $r \in \{1,3\}$. Note $r \notin \{0,2\}$ as a is obd. Thus, $a^2 \equiv_8 (4q + r)^2 \equiv_8 16q^2 + 8qr + r^2 \equiv_8 r^2 \equiv_8 1$ Since $1^2 \equiv_8 1$ and $3^2 \equiv_8 q \equiv_8 1$.

(ii) BY THE ALGORITHM DIVISION THEOREM, $\Delta = 59 + \Gamma$ with $9_1\Gamma \in \mathbb{Z}$, $0 \le r \le 4$. WE OBSERVE $\Delta^4 = (59 + \Gamma)^4 = \int_{5}^{4} (\int_{k}^{5})(59)^k$, $\Gamma = \int_{5}^{4-k} \Gamma^4 + 5$. $\int_{k=1}^{4} (\int_{k}^{5})(59)^{k,1} \Gamma^{4-k} = \Gamma^4$. IF $\Gamma = 0$ THEN $\Gamma^4 = \int_{5}^{0} 0$. IF $\Gamma = 1$ THEN $\Gamma^4 = \int_{5}^{14} 1 = \int_{$

$$\Gamma^{3} \equiv_{1} 1$$
 if $\Gamma \in \{1, 2, 4\}$ and $\Gamma^{3} \equiv_{1} 6$ if $\Gamma \in \{3, 5, 6\}$.

(iv) Let $a \in \mathbb{Z}$. Suppose 21 a AND 31 a. THEN, By THE A.D.T, a = 249 + rWHERE $q_1 r \in \mathbb{Z}$ AND $r \in \{1, 5, 7, 11, 13, 17, 19\}$. So, $a^2 = \frac{249 + r}{24} = \frac{r^2}{24}$. NOTE THAT $r^2 \in \{1, 25, 49, 121, 169, 289, 361\}$ AND THE REMAINDER IN THE DIVISION OF r^2 By 24 EQUALS 1 AS

Hence $\partial^2 \equiv_{24} \Gamma^2 \equiv_{24} 1$. The CLAIM Follows.

EXERCISE 8: IF P is A PRIME SATISFYING $M \le P \le 2m$, SHOW $\binom{2m}{m} \equiv_{P} O$.

<u>Solution:</u> Let $M \in \mathbb{N}$. Recall THAT $\binom{2m}{m} \in \mathbb{N}$. Horeover, we can write $\binom{2m}{m} = \frac{(2m)!}{m! m!} = \frac{(2m)!(2m-1)!}{m!}$. P... $\binom{m+1}{m}$ Since $m \perp P \perp 2m$. WE THUS HAVE $P \left\lfloor \binom{2m}{m} \right\rfloor$. m!. SINCE P is PriME, EITHER P[m! or $P \left\lfloor \binom{2m}{m} \right\rfloor$. IF P[m! THEN THERE EXISTS $k \in \mathbb{N}_{1}$ 144 $k \leq m$ SUCH THAT P[k]. THIS SHOWS $P \leq k \leq m$ Contradicting THAT $m \perp P$. THEREFORE, $P \not\downarrow m!$ And So, $P \left\lfloor \binom{2m}{m} \right\rfloor$. THIS SHOWS $\binom{2m}{m} \equiv P^{-1}$.

<u>EXERCISE 9</u>: Let $\partial_{i}b \in \mathbb{Z}$ AND LET P BE A PRIME NUMBER. SHOW $(\partial + b)^{P} \equiv_{p} \partial^{P} + b^{P}$

<u>SOLUTION</u>: Let alber AND LET PEN. SUPPOSE THAT P is PRIME. THEN $P \ge 2$. So, P-1 > 1. FOR EVERY KEN SUCH THAT 15 k $\le P-1$, RECALL THAT THE NUMBER $\binom{P-1}{k-1} \in \mathbb{N}$. MOREOVER, OBSERVE $P.\binom{P-1}{k-1} = \frac{P!}{(k-1)!(P-k)!} = k.\binom{P}{k}$. THEN, $P \mid k.\binom{P}{k}$ FOR $1 \le k \le P-1$. THEN, SINCE P IS PRIME, EITHER $P[k \text{ or } P[(\frac{P}{k}) \cdot \text{SINCE } k \ge P \text{ we Have } P + k \text{ And } \text{So } P[(\frac{P}{k}) \text{ for } 1 \le k \le P-1. \text{ Therefore,}$ $1 \le k \le P-1. \text{ THIS } \text{SHOWS } \binom{P}{k} = 0 \text{ for } \text{ every } 1 \le k \le P-1. \text{ Therefore,}$ By the BINOMIAL Theorem, $(a+b)^{P} = \sum_{k=0}^{P} \binom{P}{k} \cdot a \cdot b = p \cdot b^{P} + \sum_{k=1}^{P-1} \binom{P}{k} a^{k} b^{P-k} + a^{P} = a^{P} + b^{P}.$

EXERCISE 10: VERIFY THAT IF $\partial \equiv_{m_1} b$ AND $\partial \equiv_{m_2} b$ THEN $\partial \equiv_m b$ WHERE $M = \mathcal{L}cm(m_1, m_2)$. IN PARTICULAR, IF m_1 AND m_2 ARE COPRIME, $\partial \equiv_{m_1,m_2} b$.

<u>SOLUTION</u>: SiNCE $\partial \equiv_{m_1}b$ AND $\partial \equiv_{m_2}b$, THERE EXIST SILE SUCH THAT $\partial - b = M_1 \cdot S = M_2 \cdot t$. Let $d = \operatorname{gcd}(M_1, M_2)$ AND $M = \operatorname{lcd}(M_1, M_2)$. SiNCE d/M_1 WE HAVE $M_1 = d \cdot k$ FOR SOME $k \in \mathbb{Z}$. THEN,

 $\begin{array}{l} \partial_{-b} = M_{2} \cdot t = M_{2} \cdot t \cdot 1 = \frac{M_{2} \cdot t \cdot M_{1}}{dk} = \frac{M_{1} M_{2}}{d}, \ \frac{t}{k} = M \cdot \frac{t}{k} \\ \text{Since } d[M_{2} \quad \text{We Have } M_{2} = d \cdot k^{1} \quad \text{For some } k^{1} \in \mathbb{Z}. \quad \text{Then } M_{1}s = M_{2}t \\ \text{implies } that \quad d \cdot k \cdot s = dk^{1} \cdot t \quad \text{And so } d(ks - k^{1}t) = 0. \quad \text{As } d > 0 \quad \text{we Get} \\ \text{Rs} = k^{1}t \quad \text{which } \text{yields } k|k^{1}t \cdot \text{Since } k \quad \text{And } k^{1} \quad \text{Are coprime, we must have} \\ \text{R}[t \quad \text{And } the number \\ \frac{t}{k} \in \mathbb{Z}. \quad \text{This shows } m|a - b \quad \text{And } so \quad a = mb. \\ \text{NOTE } M = M_{1}.M_{2} \quad \text{if } g(d(M_{1}.M_{2}) = 1. \quad \text{The } \text{Result Follows.} \end{array}$

<u>EXERCISE 11:</u> IF a is AN obd integer, show $a^{2^{m+2}} = 1$ For EVERY POSITIVE INTEGER $M \ge 1$.

SOLUTION: LET $a \in \mathbb{Z}$. SUPPOSE a is obd. WE will proceed by induction on men. IF M=1 the Result Holds by EX. 6(i). We Assume Next THAT $a^{2^{h}} \equiv 1$ For some hear hor, $2^{h+2} | a^{2^{h}} = 1$ And we

EXERCISE 12: PROVE THAT FOR ANY DEN, THE UNIT DIGIT OF D' is 0,1,5 or 6.

<u>Solution</u>: Since ally, a CAN be WRITTEN UNIQUELY in TERMS OF POWERS OF 10 As Follows: $a = \sum_{k=0}^{m} a_{k} \cdot 10^{k}$ WHERE $a_{k} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ For every obtem. Note that 10 Divides $a - a_{0}$ since $a - a_{0} = \sum_{k=1}^{m} a_{k} \cdot 10^{k}$. Then $a \equiv_{10} a_{0}$ And so $a^{4} \equiv_{10} a_{0}^{4}$. Notice that $a_{0}^{2} \in \{0, 14, 4, 9, 25, 36, 49, 64, 81\}$ and $r_{40} (a_{0}^{2}) \in \{0, 14, 4, 5, 6, 9\}$. We thus have $a^{4} \equiv_{10} a_{0}^{4} = a_{0}^{2} \cdot a_{0}^{2} \equiv_{10} r_{10} (a_{0}^{2}) \cdot r_{40} (a_{0}^{2}) \equiv_{10} \infty$ where $x \in \{0, 14, 5, 6, 9\}$. Now, we Observe $a^{4} = \sum_{10}^{m} a_{0} \cdot a_{0}^{2} = r_{10} (a_{0}^{2}) \cdot r_{40} (a_{0}^{2}) \equiv_{10} \infty$ where bo is the Unit bisit of a^{4} . So, bo $\equiv_{10}^{n} a^{4} \equiv_{10} \infty$ And $b_{0} = r_{10} (a^{4}) = \infty$. This shows the possible values of bo Are 0, 1, 5, 6. We Next Notice All of the Mare Possible As $a^{4} = a_{0}$, $a^{4} = a_{0}$.

EXERCISE 13: FIND THE LAST TWO DIGITS OF THE NUMBER 99.

Solution: Notice q^{q^9} CAN BE WRITTEN UNIQUELY AS $\sum_{k=0}^{m} \partial_k \cdot 10^k$ For some mend and $\partial_k \in \mathbb{Z}_1$ of $\partial_k \leq q$ for every of $k \leq m$. Sol the last two digits ARE ∂_0 and ∂_1 . Observe the number $\partial_1 \partial_0 = \partial_1 \cdot 10 + \partial_0$ and $q^{q^9} - \partial_1 \partial_0 = 0$. Since $0 \leq \partial_1 \partial_0 \leq 100$ we further Have $\partial_1 \partial_0 = \Gamma_{100} (q^{q^9})$. Sol to determine $\partial_1 \partial_0$ we will compute $\Gamma_{100} (q^{q^9})$. We now observe $q^9 = 0$ since $q^3 - 9 = q(q^2 - 1) = 9$. So = 10.72.

THIS SHOWS $q^{9} = 10q + 9$ For some $q \in \mathbb{Z}$. We Also observe that $9 = 4^{10}$ and $q^{10} = 4^{10} = 4^{10}$. Moreover, $9^{10} = (q^{2})^{5} = 8^{10} = 6^{5} = (6^{2})^{2} \cdot 6 = 44^{2} \cdot 6 = 424 \cdot 6$ AND $So_{1} = 9^{10} = 25^{-24} = 25^{-24} = 25^{-24} = 25^{-25}$

IN FACT,
$$9 \equiv_{4} 1$$
 shows that $9^{9} \equiv_{4} 1$ and we also have $9^{9} \equiv_{25} 14$ As
 $9^{7} \equiv_{25} 3^{10} \equiv_{25} (3^{3})^{6} \equiv_{25} 2^{6} \equiv_{25} 64 \equiv_{25} 14$. Since $9cd(4,25)=1$, $9^{9} \equiv_{100} 14$.
We therefore conclude the last two digits of 99^{9} are $3_{1}=1, 3_{0}=4$.
Exercise 14: Show that an integer is divisible by 4 iff the number
Form by its tens and units digits is divisible by 4.

<u>SOLUTION</u>: LET DE IN. WE CAN WRITE $D = \sum_{k=0}^{m} \partial_{k} \cdot 10^{k}$ For some aben with $0 \le \partial_{k} \le 9$. NOTE ALSO THAT 4/100 AND $100/10^{k}$ For EVERY $b \ge 2$. WE THUS HAVE $D = \frac{m}{4} \sum_{k=0}^{m} \partial_{k} \cdot 10^{k} = \frac{1}{4} \partial_{0} + 10 \partial_{1} + \sum_{k=2}^{m} \partial_{k} \cdot 10^{k} = \frac{10}{4} \partial_{1} + \partial_{0} \cdot \partial_{1} + \partial_{0} \cdot$

EXERCISE 15: FIND ALL POSSIBLE VALUES OF X, Y SUCH THAT THE NUMBER 273 X49 Y5 is DIVISIBLE BY 495.

SOLUTION: Let $a = 273 \times 4975$ For some integers $0 \le \times 19 \le 9$. Note we can Write $a = 2.40^{7} + 7.40^{6} + 3.40^{5} + \times .40^{4} + 4.10^{3} + 9.40^{2} + 7.40 + 5$. THAT is,

$$\begin{cases} x+y = 6 \\ x-1 = -1 \end{cases} \begin{cases} x+y = 6 \\ x-y = 10 \end{cases} \begin{cases} x+y = 15 \\ x-y = 10 \end{cases} \begin{cases} x+y = 15 \\ x-y = -1 \end{cases}$$

HOWEVER, SINCE $X_1Y \in \mathbb{Z}$, $0 \le x_1y \le 9$ THE ONLY POSSIBLE CASE IS THE CASE WHEN X+Y=15 AND X-Y=-1. THIS SHOWS THAT X=7 AND Y=8. HENCE, THE NUMBER IS 27374985.

EXERCISE 16: LET DM DM-1 DM-2 ... 222120 BE A NATURAL NUMBER OF M+1 DIGITS WHERE OGDRE9 FOR OGREM. PROVE THAT THE GIVEN NUMBER is Divisible BY 6 IFF 6 do+421+...+42m-1+42m.

<u>SOLUTION:</u> LET $a = a_m a_{m-1} \dots a_1 a_0$. NOTE THAT $a = \sum_{k=0}^{m} a_{k.10}^k$. We NEXT CLAIM THAT $10^m = 4$ for every men. IF m=1 then $10^n = 610 = 4$. SUPPOSE $10^m = 64$ for some hen, h>1. THEN, $10^m = 610 \cdot 10^n = 64.4 = 64.4$ NOW THE CLAIM HOLDS BY A STRAIGHTFORWARD INDUCTION ARGUMENT.

Hence,
$$\Delta = \frac{\sum_{k=0}^{m} a_k \cdot 0^k}{6} = \frac{1}{6}a_0 + \frac{\sum_{k=1}^{m} a_k \cdot 0^k}{6} = \frac{1}{6}a_0 + 4 \cdot \frac{\sum_{k=1}^{m} a_k}{6}a_k$$
. We thus have
 $6 \mid a \mid iFF \mid 6 \mid a_0 + 4a_1 + 4a_2 + \dots + 4a_m$. The result Follows.

EXERCISE 17: GIVEN AN INTEGER N, LET M BE THE INTEGER FORMED BY REVERSING THE ORDER OF THE DIGITS OF N. VERIFY THAT THE DIFFERENCE N-M is Divisible By 9.

SOLUTION: LET $N = \sum_{k=0}^{M} \partial_{k} \cdot 10^{k}$ The decimal expansion of N, where of $\partial_{k} \cdot 10^{k}$. Then, $M = \partial_{m} + \partial_{m-1} \cdot 10^{k} + \dots + \partial_{1} \cdot 10^{m-1} + \partial_{0} \cdot 10^{m} = \sum_{k=0}^{M} \partial_{m-k} \cdot 10^{m-k}$. We thus Have $N - M = \int_{k=0}^{M} \partial_{k} \cdot 10^{k} - \sum_{k=0}^{M} \partial_{m-k} \cdot 10^{m-k} = \int_{q}^{m-k} \partial_{k} - \sum_{k=0}^{M} \partial_{m-k} = \int_{q}^{0} \partial_{k} \cdot 10^{k} + \int_{q}^{0} \partial_{k} \cdot 10^{k} = \int_{$

b4++1