Urea cycle and organs

Urea cycle

- > Amino nitrogen ammonia (aquatic spp)/ urea (terrestrial animals)/ uric acid (birds)
- > Liver mitochondria and cytosol
- > ATP dependent, 4 enzymatic steps (regulation on the first)
- Diet dependent

© 2017 W. H. Freeman and Company

Figure 18-12
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Tissues and organs

The liver

- The portal vein carries nutrients to the liver.
- Hepatocytes turn nutrients into fuel.
- Hepatocyte enzymes turn over quickly.
- Enzymes increase or decrease with changes in diet and the needs of other tissues.

Sugars in the liver

- Simple sugars convert to glucose-6phosphate (G6p)
- ➤ G6p can be produced by multiple pathways, can be used in multiple processes
- Hepatocytes have GLUT2 transporter
- Hepatocytes have glucokinase (hexokinase IV)
 - Not inhibited by G6p → continuous production
 - Allows higher glucose concentrations
 - No G6p production at low levels of glucose

G6p in the liver

- Dephosphorylate to yield free glucose to send to other tissues
- Make into liver glycogen
- Enter glycolysis, make acetyl CoA and then ATP for hepatocytes themselves
- Enter glycolysis, make acetyl CoA to be made into fatty acids and then TAGs
- Enter pentose phosphate pathway to yield NADPH and ribose-5-phosphate

Amino acids in the liver

- Make into proteins for liver and other tissues
- > Make into hormones, nucleotides
- Make into citric acid cycle intermediates or pyruvate:
 - o for gluconeogenesis
 - o convert pyruvate to acetyl-CoA for:
 - liver cell energy
 - conversion to lipids

Fatty acids in the liver

- > FA are primary fuel for liver
- > Production of:
 - liver lipids
 - Phospholipids
 - TAGs for storage
 - acetyl-CoA and NADH
 - excess acetyl-CoA →
 ketone bodies for
 other tissues during
 carbs restriction,
 fasting
- Carry FA to heart and muscle for oxidation

Figure 23-16

Lehninger Principles of Biochemistry, Seventh Edition

2017 W. H. Freeman and Company

Adipose tissue

- > White adipose tissue (WAT)
 - large spherical cells with one lipid droplet
 - little room left for mitochondria and nucleus
- Brown adipose tissue (BAT)
 - o smaller
 - several lipid droplets
 - o more mitochondria
 - uncoupling protein 1 (UCP1)

WAT

- > Serves as fuel storage
- Proteins and enzymes for the synthesis and breakdown of TAGs on the surface of the vacuole
- Metabolically active
- Can store or release fatty acids responding to hormone stimulation
- > Endocrine organ
 - Produces and releases hormones
 - Regulates metabolism of fats and carbs

Brown and beige adipose tissue

- Better vascularization and innervation than WAT
- > Involved in thermoregulation
- UCP1 provides an alternative for electrons produced in the citric acid cycle → heat release
- Oxidase both their own and blood fatty acids and glucose
- Activated by cold and exercise

Photo by Kentish Plumber

Muscle

- Slow-twitch (red muscle)
 - o fed by many blood vessels
 - o rich in mitochondria
 - energy via slow and steady oxidative phosphorylation
- > Fast-twitch (white muscle)
 - fewer mitochondria and lower
 O₂ delivery
 - uses ATP faster and fatigues faster due to greater demands combined with reduced O₂ delivery
 - Endurance training can increase mitochondria

Muscle

Brain

- ➤ Made of neurons and glial cells
- ➤ Neurons predominantly use glucose (can use ketone bodies if starving)
- > Astrocytes can use fatty acids
- \triangleright Uses almost 20% of the total O_2 consumption (at rest)
- > ATP is used to maintain electrical potential across membranes
- Constantly dependent on incoming glucose

Blood

- ➤ Mediates interactions among tissues (nutrients, waste, O₂, CO₂, hormonal signals)
- > Erythrocytes, leukocytes and platelets almost half of the volume
- Concentrations of many compounds is kept constant

