Linear congruences and the Chinese remainder theorem

LET 2,66 老, M & N. AN EQUATION OF THE FORM 2X=mb is

CALLED A LINEAR CONGRUENCE, AND BY A SOLUTION OF SUCH AN

EQUATION WE MEAN AN INTEGER XO FOR WHICH 2 XO =mb.

BY DEFINITION, 2 XO =mb iFF M 2xo-b iFF 2 Xo-b = myo FOR

SOME YO G 老. THUS, THE PROBLEM OF FINDING ALL INTEGERS THAT

WILL SATISFY THE LINEAR CONGRUENCE 2X=mb is iDENTICAL

WITH THAT OF OBTAINING ALL SOLUTIONS OF THE LINEAR DIOPHANTINE

EQUATION 2X-my=b.

IT IS CONVENIENT TO TREAT TWO SOLUTIONS OF $2x \le_M b$ THAT ARE CONGRUENT MODULO M AS BEING 'EQUAL' EVEN THOUGH THEY ARE NOT EQUAL IN THE USUAL SENSE. SO, WHEN WE REFER TO THE NUMBER OF SOLUTIONS OF $2x \le_M b$, WE MEAN THE NUMBER OF INCONGRUENT INTEGERS SATISFYING THIS CONGRUENCE.

THEOREM: THE LINEAR CONGRUENCE $A \times B = b$ HAS A SOLUTION IF AND ONLY IF $d \mid b$, where $d = gcd(a_1m)$. IF $d \mid b$ Then it has d mutually incongruent solutions modulo m.

GIVEN $a_1b \in \mathbb{Z}$, $m \in N$, we want to Find all $x \in \mathbb{Z}$ such that $a_1b \in \mathbb{Z}$, $b_2b \in \mathbb{Z}$. Note there exist $a_2b \in \mathbb{Z}$ such that $a_2b \in$

LET $d = \gcd(a_1 m)$. Suppose that d/b. We want to solve $a_X = mb$. To be this we could find all $x_1 y \in \mathbb{Z}$ such that $a_X + (-m) \cdot y = b$. Then, all $x \in \mathbb{Z}$ we find ARE ALL THE Solutions of $a_X = mb$.

EXERCISE 1: SOLVE 36X=102 8 AND 34X = 98 60 IF POSSIBLE.

SOLUTION: WE FIRST OBSERVE, $\gcd(36, 102) = \gcd(102, 36) = \gcd(36, 30) = \gcd(30, 6) = 6$. THEN, SINCE $6
mathcal{1}
mathcal{2}
mathcal{3}
mathcal{4}
mat$

49/17x-30 4=> 17 X + 1-49) Y = 30 HAS INTEGER Solutions.

NOW, WE SOLVE THIS DIOPHANTINE EQUATION. WE OBSERVE

49 = 17.2 + 15 /17 = 15.1 + 2 /15 = 7.2 + 1. This shows 1 = 15 - 7.2 = 15 - 7.(17 - 15) = 8.15 - 7.17 = 8(49 - 17.2) - 7.17 = 8.49 - 17.16 - 7.17 = 8.49 - 23.17 = 17.(-23) + (-49).(-8).

THEN, 17. (-23). 30 + (-49). (-8). 30 = 30 SHOWS (X₁Y) = (-690, 11760) is A Solution. Then, Any other Solution has the Form X = -690 + 49t for some Choice of to Z. Then, the integers X = -690 + 49t for t = 0.1 are incongruent modulo 98 (but all of them are congruent modulo 49). Then the incongruent Solutions Are X = -690 AND X = -690 AND X = -641. Equivalently, X = -690 AND X = -641. Equivalently, X = -690 AND X = -641.

WE NEXT SEE ANOTHER WAY TO SOLVE LINEAR CONGRUENCES. SINCE d/a, d/b, d/m THEN $\frac{a}{a}$, $\frac{b}{a}$, $\frac{m}{a}$ ARE ALL INTEGERS. THEN,

 $\partial X \equiv_M b \iff d. \frac{\partial}{\partial x} X \equiv_d \frac{d. \frac{b}{d}}{dx} \iff \frac{\partial}{\partial x} X \equiv_d \frac{b}{dx}.$

SiNCE $qcd\left(\frac{a}{d},\frac{m}{d}\right)=1$ THEN THERE EXIST $S_1 t \in \mathbb{Z}$ SUCH THAT $1 = k \cdot \frac{a}{d} + S \cdot \frac{m}{d}$ THIS SHOWS THAT $1 = \frac{m}{d} k \cdot \frac{a}{d}$ MOREOVER,

 $\frac{\partial}{\partial t} X = \underbrace{\frac{b}{a}}_{\underline{a}} \underbrace{\frac{b}{a}}_{\underline{a}} + \underbrace{\frac{b}{a}}_{\underline{a}} \underbrace{\frac{b}{a}}_{\underline{a}} + \underbrace{\frac{b}{a}}_{\underline{$

AS THE INTEGERS R AND M ARE COPRIMES.

WE THUS HAVE $X = \frac{m}{d} X_0$ where X_0 is the remainder of $\frac{b}{d} k$ in the division by $\frac{m}{d}$. Furthermore, All the solutions are $X = X_0 + t \cdot \frac{m}{d}$ where $t \in \mathbb{Z}$ and $0 \le t \le d-1$.

EXERCISE 2: FIND ALL XE Z SUCH THAT 39 X = 45 24.

EXERCISE 3: FIND ALL DEZ SUCH THAT gcd (72+2,52+3) \$\frac{1}{2}\$.

SOLUTION: LET $d = \gcd(72+2,52+3)$. THEN, d/72+2 AND d/52+3. NOTE

THAT $\left| \begin{array}{c} d|(72+2).5 \\ d|(52+3).7 \end{array} \right| \rightarrow \left| \begin{array}{c} d/352+10 \\ d/352+21 \end{array} \right| \rightarrow \left| \begin{array}{c} d/352+21 \end{array} \right| - (352+21) - (352+10) \rightarrow \left| \begin{array}{c} d/11 \end{array} \right|$

THEREFORE, ALL DEZ SUCH THAT $qcd(72+2,52+3) \neq 1$ ARE ALL OF THE FORM 2=6+119, $9\in\mathbb{Z}$.

EXERCISE 4: LET above \mathbb{Z}_m be iff $A = \mathbb{Z}_m$ b.

SOLUTION: SUPPOSE FIRST THAT ac=mbc. THEN, $m \mid ac-bc$ which means that $m \mid c(a-b)$. Since m and c are coprime, it follows $m \mid a-b$ and so, a=mb. Suppose Next that a=mb. Then $m \mid a-b$ and so, $m \mid c(a-b) = c.a-cb$. This shows that ac=mcb. Observe this property was used in the Previous exercises!

SOLUTION: SUPPOSE WE WANT TO FIND ALL INTEGERS XEZ SUCH THAT

 $2 \times \equiv_{35} - 7$ AND $5 \times \equiv_{26} - 1$. Since $\gcd(2_1 35) = \gcd(5_1 26) = 1$, $2 \times \equiv_{35} - 7$ AND $2 \times \equiv_{35} 20$ APD $X \equiv_{35} 14$. $5 \times \equiv_{26} - 1$ APD $5 \times \equiv_{26} 25$ APD $X \equiv_{26} 5$.

THEN, IT IS EQUIVALENT TO FIND ALL XEZ SUCH THAT $X \equiv_{35} 14$ AND $X \equiv_{26} 5$.

OBSERVE, $x \in \mathcal{Z}$ is A Solution of the system iff $x \equiv_{36} k + 14$ AND $35k + 14 \equiv_{26} 5$ iff $x \equiv_{35} k + 14$ AND $35k \equiv_{26} - 9$. Since $\gcd(35, 26) \equiv_{1} 1$ AND 1/9 we note there exists 1/9 = 1/9

SUPPOSE NOW WE WANT TO SOLVE THE SYSTEM $\begin{cases} 7 \times 2_{30} & 1 \\ 5 \times 2_{31} & 94 \end{cases}$ IT IS EASY TO SEE THE ABOVE SYSTEM IS EQUIVALENT TO $\begin{cases} 1 \times 2_{30} & 13 \\ 1 \times 2_{30} & 13 \end{cases}$. THEREFORE, $1 \times 2_{30} \times 2_{30} = 1_{30} = 1_{30} \times 2_{30} = 1_{30} = 1_{30} \times 2_{30} = 1_{$

WE NOW CONSIDER THE SYSTEM $\int 3 \times \equiv_{14} 13$. It is easy to see that $\begin{bmatrix} 7 \times \equiv_{20} -13 \\ 7 \times \equiv_{20} -13 \end{bmatrix}$ This system is equivalent to the system $\begin{cases} X \equiv_{14} 9 \\ X \equiv_{20} 1 \end{cases}$ We thus have $X \in \mathcal{F}$ is a solution iff X = 14k + 9 and $14k + 9 \equiv_{20} 1$ iff X = 14k + 9 and $14k =_{20} - 8$. We observe $\gcd(14, 20) \mid -8$ and so there exists such ker. It turns out that all the solutions are X = 10.149 - 19.

Note here $\gcd(14, 20) \not= 1$ and there are solutions.

IN GENERAL, A LINEAR CONGRUENCE SYSTEM IS ALWAYS EQUIVALENT TO A SYSTEM

OF THE FORM $\int X \leq_{m_1} 21$. MOREOVER, iF $qcd(m_1, m_2) = 1$ THEN $X \leq_{m_2} 22$

THE SYSTEM HAS SOLUTION. IF $g(d(m_1, m_2) \neq 1)$ THEN BOTH CASES ARE POSSIBLE: TO HAVE A SOLUTION OR NOT.

THEOREM: (CHINESE REMAINDER THEOREM) LET $M_1, M_2, ..., M_\Gamma$ BE POSITIVE INTEGERS SUCH THAT $qcd(m_i, m_j) = 1$ FOR $i \neq j$. THEN THE SYSTEM OF LINEAR CONGRUENCES

$$X \equiv_{M_1} 21$$

$$X \equiv_{M_2} 22$$

$$\vdots$$

$$X \equiv_{M_r} 3r$$

HAS A SIMULTANEOUS SOLUTION, WHICH IS UNIQUE MODULO THE INTEGER $M=M_1\,M_2\,...\,M_r$. Moreover, for each $1 \le k \le r$, Let $N_k = \frac{M}{M_k}$ And so $\gcd\left(N_k, M_k\right) = 1$. Then, the equation $N_k \times \mathbb{I}_{M_k} = \mathbb{I}_{M_k} \times \mathbb{I}_{M_k} = \mathbb{I}_{M_k} \times \mathbb{I}_{M_k} = \mathbb{I}_{M_k} \times \mathbb{I}_{M_k} \times \mathbb{I}_{M_k} = \mathbb{I}_{M_k} \times \mathbb{I}_{$

EXERCISE 6: FIND THE SOLUTION OF THE SYSTEM $X \equiv_{4} 1, \quad X \equiv_{7} 2 \quad \text{AND} \quad X \equiv_{15} 4.$

Solution: Note that $\gcd(4,7,15)=1$. So, the Given system has a solution modulo M=4.7.15=420. Let $M_1=4$, $M_2=7$, $M_3=15$. Then $M_1=7.15=405$, $M_2=4.15=60$, $M_3=4.7=20$ and $M_1=1$, $M_2=2$, $M_3=4$. We now solve $M_1\times \equiv_{M_1}1$, $M_2\times \equiv_{M_2}1$ and $M_3\times \equiv_{M_3}1$. Then, $M_1\times \equiv_{M_1}1$ and $M_3\times \equiv_{M_3}1$. Then,

 $\begin{array}{l} N_{1} \times \equiv_{m_{2}} 1 & \text{and} & 60 \times \equiv_{7} 1 & \text{and} & 4 \times \equiv_{7} 1 & \text{and} & 8 \times \Xi_{7} 2 & \text{and} & \times \Xi_{7} 2 \\ N_{3} \times \equiv_{m_{3}} 1 & \text{and} & 28 \times \Xi_{15} 1 & \text{and} & -2 \times \Xi_{15} 1 & \text{and} & 16 \times \Xi_{15} -8 & \text{and} & \times \Xi_{15} 7 \\ \text{THEN, WE CAN TAKE } & X_{1} = 1 \, , & X_{2} = 2 \, , & X_{3} = 7 \, . & So, \text{ WE GET} \\ \hline \times = 21 \, \text{Nu} \, x_{1} \, + 22 \, \text{Nu} \, x_{2} \, + 23 \, \text{Nu} \, x_{3} \, = \, 1.105.1 + 2.60.2 + 4.26.7 = 1129. \\ \text{WE THUS HAVE} & \times = 1129 \equiv_{420} 289 \, , & \text{THEN, ALL Solutions ARE} \\ & \times = 4209 + 289 \, , & 9 \in 7 \, . \end{array}$