Fermat's Theorem

THEOREM: (FERMAT'S THEOREM) LET P BE A PRIME AND SUPPOSE THAT P \neq 0. THEN $a^{P-1} \equiv_P 1$.

COROLLARY: IF P is A PRIME THEN a P = D & FOR ANY INTEGER D.

EXERCISE 1: USE FERMAT'S THEOREM TO VERIFY THAT 17 DiviDES

EXERCISE 2: IF gcd (2,35) = 1 SHOW THAT 212 = 351.

SOLUTION: SUPPOSE THAT $\gcd(a_135)=1$. THEN $\gcd(a_15)\in\{a_15\}$. if $\gcd(a_15)=5$ then 5|a and 5|35 imply that $5|\gcd(a_15)=1$. This shows $\gcd(a_15)=1$. Similarly, $\gcd(a_17)=1$. We then observe $5\nmid a$, $7\nmid a$ and since 5,7 are Primes, by Fermat's Theorem, $a_1^6=1$ and $a_1^4=1$. We thus have $a_1^{12}=a_1^{12}=1$ and $a_1^{12}=a_1^{12}=1$. This shows that $a_1^{12}=1$ and $a_1^{12}=a_1^{12}=1$. Since $a_1^{12}=a_1^{12}=1$. We therefore have $a_1^{12}=a$

EXERCISE 3: IF gcd (a,133) = gcd (b,133) = 1 SHOW THAT 133 | 2 10 - 6 18.

SOLUTION: WE FIRST OBSERVE THAT 133 = 7.19. SINCE $\gcd(a_1133) = 1$ THEN $\gcd(a_17) = \gcd(a_119) = 1$. Similarly, as $\gcd(b_1133) = 1$ we get $\gcd(b_17) = \gcd(b_17) = 1$. Then, Since q does not divide a nor q, by Fernat's theorem, $q = \frac{1}{2} = 1$ and $q = \frac{1}{2} = 1$. This shows $q = \frac{1}{2} = 1$. This shows $q = \frac{1}{2} = 1$. And so $q = \frac{1}{2} = 1$. This shows $q = \frac{1}{2} = 1$. And so $q = \frac{1}{2} = 1$. Since $q = \frac{1}{2} = 1$. We thus have $q = \frac{1}{2} = 1$. The result follows.

EXERCISE 4: FROM FERMAT'S THEOREM DEDUCE THAT 13 DIVIDES 11 + 1

FOR ANY INTEGER M > 0.

SOLUTION: SINCE 13 $\stackrel{?}{/}$ ME HAVE 11 $\stackrel{?}{/}$ BY FERMAT'S THEOREM. THEN 13 $\stackrel{?}{/}$ $\stackrel{?}{$

EXERCISE 5: DERIVE EACH OF THE FOLLOWING CONGRUENCES:

(i)
$$a^{24} \equiv_{45} a$$
 FOR ALL a , (ii) $a^9 \equiv_{30} a$ FOR ALL a .

SOLUTION:

(i) BY FERMAT'S THEOREM, $\partial^5 = \frac{1}{5} \partial$ AND $\partial^3 = \frac{1}{3} \partial$. This shows that $\partial^{24} = \frac{1}{5} \partial \partial^2 = \frac{1}{5} \partial \partial^4 = \frac{1}{5} \partial \partial^5 = \frac{1}{5} \partial \partial^4 = \frac{1}{5} \partial^3 = \frac{1}{5} \partial \partial^4 = \frac{1}{5} \partial^3 = \frac{1}{5} \partial \partial^4 = \frac{1}{5} \partial^3 = \frac{1}{5} \partial \partial^4 = \frac{1}{5} \partial^4$

(ii) BY FERNAT'S THEOREM,
$$a^5 = 5a$$
, $a^3 = 3a$ And $a^2 = 2a$. Then,
$$a^9 = 5a^5 \cdot a^4 = 5a \cdot a^4 = 5a^5 = 5a$$
,

$$\partial^{9} \equiv_{3} \left(\partial^{3}\right)^{3} \equiv_{3} \partial^{3} \equiv_{3} \partial^{7}$$

$$\partial^{3} = {}_{2} \left(\partial^{2}\right)^{4}. \ \partial = {}_{2} \ \partial^{4}. \ \partial = {}_{2} \ \left(\partial^{2}\right)^{2}. \ \partial = {}_{2} \ \partial^{2}. \partial = {}_{2} \ \partial. \partial = {}_{2} \ \partial. \partial = {}_{2} \ \partial^{2} = {}_{2} \ \partial . \partial = {}_{3} \ \partial = {}_{4} \ \partial = {}_{5} \ \partial$$

THIS SHOWS THAT $5 \mid \partial^9 - \partial$, $3 \mid \partial^9 - \partial$ AND $2 \mid \partial^9 - \partial$. NOTE THAT 30 = 5.3.2 AND THAT $9cd(5_13_12) = 1$. WE THERE FORE HAVE $30 \mid \partial^9 - \partial$ WHICH MEANS $\partial^9 = 30$.

EXERCISE 6: IF 7/2 PROVE THAT EITHER 23+1 OR 23-1 IS DIVISIBLE BY 7.

SOLUTION: BY FERMAT'S THEOREM WE HAVE $a^6 = \frac{1}{7}$. Then, $7/a^6 - 1$. WE ALSO OBSERVE $a^6 - 1 = (a^3 + 1) \cdot (a^3 - 1)$. IF $7/a^3 + 1$ WE ARE DONE. SUPPOSE NEXT $7/a^3 + 1$. Then, $9 < a < (7, a^3 + 1) = 1$. WE THUS HAVE THAT $7/a^3 - 1$.

EXERCISE 7: LET P BE A PRIME AND $gcd(a_1P)=1$. USE FERMAT'S THEOREM TO VERIFY

THAT $X = A^{P-2}b$ is A Solution OF $AX = A^{P-2}b$. Solve $A = A^{P-2}b$.

SOLUTION: BY FERMAT'S THEOREM $\partial^{P-1} \equiv_{p} 1$. Suppose $\partial X \equiv_{p} b$. Then, $\partial^{P-2} \partial X \equiv_{p} \partial^{P-2} \partial X \equiv_{p} \partial^{P$

EXERCISE 8: ASSUMING THAT 2 AND 6 ARE INTEGERS NOT DIVISIBLE BY THE PRIME P, PROVE:

- (i) IF aP=pbP THEN a=pb.
- (ii) IF $\partial^{p} \equiv_{p} b^{p}$ THEN $\partial^{p} \equiv_{p^{2}} b^{p}$.

SOLUTION: ASSUME PLD, PLB. THEN 2 = 2 AND 6 = 6.

- (i) WE observe $\partial = \partial^P = \partial^P$
- (ii) BY (i) , $\partial = pb$. So , P/b-a . THEN, b = PR+a FOR SOME $R \in \mathbb{Z}$.

 THEN, $\partial^{P} b^{P} = \partial^{P} [PR+a)^{P} = \partial^{P} \sum_{j=0}^{P} {p \choose j} \cdot (PR)^{j} \cdot \partial^{P-j} = -\sum_{j=1}^{P} {p \choose j} \cdot (PR)^{j} \cdot \partial^{P-j} = -P^{2} \cdot R \cdot \partial^{P-1} \sum_{j=2}^{P} {p \choose j} \cdot P^{j} \cdot P^{j} \cdot \partial^{P-j} = P^{2} \cdot (-R \partial^{P-1} \sum_{j=2}^{P} {p \choose j} \cdot P^{j-2} \cdot P^{j} \cdot \partial^{P-j})$

THUS, P2 | 2P-bP WHICH IMPCIES 2P=p2bP.

EXERCISE 9: EMPLOY FERMAT'S THEOREM TO PROVE THAT, IF P IS AN ODD PRIME, THEN $1^{P-1}+2^{P-1}+3^{P-1}+...+(P-1)^P=P^{-1}$

SOLUTION: SUPPOSE THAT P is AN ODD INTEGER. THEN P $\geqslant 3$. IF $\geqslant 2$ P THEN P $\geqslant 3$. IF $\geqslant 2$ P THEN P $\geqslant 3$. IF $\geqslant 2$ P THEN P $\geqslant 3$ AND SO, $\geqslant 2$ $\geqslant 1$ BY FERMAT'S THEOREM. THEN, P-1 $\geqslant 2$ $\geqslant 2$ $\geqslant 2$ $\geqslant 2$ $\geqslant 2$ $\geqslant 2$ $\geqslant 3$ $\geqslant 4$ \geqslant

WE OBSERVE THE RESULT HOLDS EVEN FOR P=2 SINCE $1=(P-1)^{P-1}$ AND $1\equiv_2-1$.

EXERCISE 10: EMPLOY FERMAT'S THEOREM TO PROVE THAT, IF P IS AN ODD PRIME, THEN $1^P + 2^P + 3^P + ... + (P-1)^P = 0$.

SOLUTION: BY FERMAT'S THEOREM, $\partial_{p}^{P} = \partial_{p}^{P} \cdot HeN$, $\partial_{p}^{P} \cdot HeN$, ∂_{p}^{P

EXERCISE 11: PROVE THAT IF P IS AN ODD PRIME AND R IS AN INTEGER

SATISFYING $1 \le k \le P-1$ THEN $\binom{P-1}{k} \equiv_{P} (-1)^{k}$.

Solution: If P=2, IT TRIVIALLY HOLDS. Assume $P \ge 3$. WE NOTE $R! \left(P-1 \right) = \frac{(P-1)!}{(P-k-1)!} = \frac{k}{j=1} \left(P-j \right)$. Since P-j = -j, $k! \left(P-1 \right) = \frac{k}{p-1} \left(P-j \right) = \frac{k}{j=1} \left(P-j \right) = \frac{k}{p-1} \left(P-$

EXERCISE 13: Assume THAT P AND 9 ARE DISTINCT ODD PRIMES SUCH THAT $P-1 \mid 9-1$. IF $god(a_1 p_1)=1$ SHOW THAT $a_{pq}^{q-1}=p_q$ 1.

SOLUTION: Since P, q ARE DISTINCT PRIMES AND god (a, pq)=1, we have gcd(a,p)=gcd(a,p)=1. Then, by Fernat's Theorem, d=p1 And d=p1. Since P-1 |q-1 we have q-1=k(P-1) for some $k\in\mathbb{R}$. So, $d^{q+1}=$