Wilson's Theorem

<u>THEOREM</u>: (WILSON) IF P is A PRIME THEN $(P-1)! = P^{-1}$.

EXERCISE 1: FIND THE REMINDER WHEN 2 (26!) is DiviDED BY 29.

Solution: Since 29 is prime, By Wilson'S THEOREM $28! \equiv_{29} - 1$. We now OB SERVE 28.27 = 29.26+2 which MEANS 28.27 $\equiv_{29} 2$. This shows THAT

2. 26! = 28.27.26! = 28! = 29 - 1 = 29 28. WE THUS HAVE 2.(26!) HAS REMAINDER 28 in THE DIVISION BY 29.

EXERCISE 2: FIND THE REMAINDER WHEN 15! is divided by 17.

<u>SOLUTION</u>: SINCE 17 is PRIME, BY WILSON'S THEOREM WE HAVE $16! = \frac{1}{17}$. WE NOW NOTICE THAT (-1). 15! = 16.15! = 16! = -1. THIS SHOWS THAT (-1).(-1).15! = (-1).(-1). Hence, $15! = \frac{1}{17}$ AND THE REMAINDER OF $15! \pm n$ THE Division By 17 is 1.

EXERCISE 3: SHOW THAT 18! \equiv_{432} -1.

<u>Solution</u>: WE FIRST NOTE 437 = 19.23. NOTE Also THAT $19_{1}23$ ARE PRIME. THEN, BY WILSON'S THEOREM, $18! = 19_{19} - 1$ AND $22! = 23_{23} - 1$. WE NOW OBSERVE $22! = 23_{23}22.21.20.19.18! = (-1).(-2).(-3).(-4).18! = 24.18! = 21.18! = 23_{10}18! = 23_{10}18!$. THEN $18! = 23_{10} - 1$. WE THEREFORE HAVE 23|18! + 1 AND 19|18! + 1. Since $9 \text{cd}(19_{1}23) = 1$ WE HAVE 19.23|18! + 1. HENCE 18! = -1.

THE CONVERSE OF WILSON'S THEOREM is Also TRUE. IF (m-1)! = -1THEN M MUST BE PRIME. TO SEE THIS, SUPPOSE THAT M IS NOT A PRIME. THEN, M HAS A DIVISOR of WITH 12 d 2 m. NOTE THAT $d \le m-1$. So d is one FACTOR OF (m-1)!. THIS SHOWS $d \mid (m-1)!$. SINCE $d \mid m$

AND	m (M-1)! +1	WE HAVE	d ((M-1)! +1.	THIS IMPLIES	d 1
AS	1 = (m-1)! +	1 - (M-1)!	, which is a	CONTRADICTION.	

THEOREM: AN INTEGER M>1 is PRIME IFF $(M-1)! \ge -1$.

EXERCISE 4: PROVE THAT AN INTEGER m > 1 is PRIME iFF $(m-2)! =_m 1$. <u>Solution</u>: Since $m \cdot 1 + (m-1) \cdot (-1) = m - m + 1 = 1$ we have $(m-1) \cdot (-1) =_m 1$. THIS SHOWS THAT $(m-1) =_m -1$. WE NOW OBSERVE $(m-1)! =_m -1$ iFF $(m-2)! =_m 1$. IF $(m-2)! =_m 1$ THEN $(m-1)(m-2)! =_m (-1) \cdot 1$ AND So $(m-1)! =_m -1$. CONVERSELY, ASSUME $(m-1)! =_m 1$. THEN $(m-1)! =_m (m-1)(m-2)! =_m (-1) \cdot (m-2)! =_m -1$. THIS SHOWS $(m-2)! =_m 1$. WE THEREFORE HAVE

M is PRIME IFF $(M-1)! \equiv_{M} -1$ iff $(M-2)! \equiv_{M} 1$.

EXERCISE 5. IF M is composite show that $(M-1)! \equiv_{M} 0$ except when M=4. Solution: For M=4 we have $[4-1]! = 3! = 6 \equiv_{4} 2$. Assume that M74. SINCE M is composite then $M=\Gamma$.s for some integers $1 \leq \Gamma_{7} \leq M$. THEN Γ and S are factors of (M-1)!. IF $\Gamma \neq S$ then Γ and S are DIFFERENT FACTORS in (M-1)!. So, $\Gamma \leq [(M-1)!$. Then $(M-1)! \equiv_{M} 0$. Assume now that $\Gamma = S$. Then $M \equiv \Gamma^{2}$. IF $\Gamma \geqslant \frac{M}{2}$ then $M = \Gamma^{2} \ge \left(\frac{M}{2}\right)^{2} = \frac{M^{2}}{4}$ and $4M \ge M^{2}$. This shows $M(M-4) \le 0$ which implies that $M \le 4$, A contradiction. Then $\Gamma < \frac{M}{2}$ and $2\Gamma^{2}M$. Therefore, $2\Gamma \le M-1$. Now, note Γ and 2Γ are both Different Factors OF $(M-1)! =_{M} 0$.

EXERCISE G: GIVEN A PRIME NUMBER P, ESTABLISH THE CONGRUENCE

$$(P-1)! \equiv P-1$$

 $1+2+3+\dots+(P-1)$

<u>SOLUTION</u>: SINCE P IS PRIME, BY WILSON'S THEOREM $(P-1)! \equiv P = 1 \equiv P = 1$. NOTE THAT $1+2+\dots+(P-1) \equiv \frac{P.(P-1)}{2}$. IF P=2 THEN THIS IS TRIVIALLY TRUE. ASSUME THAT $P \ge 3$. THEN P-1 IS EVEN AND $\frac{P-1}{2} \in \mathbb{Z}$. NOTE $\frac{P-1}{2} \angle P-1$ AND SO $\frac{P-1}{2}$ IS A FACTOR OF (P-1)! which shows $(P-1)! \equiv \frac{P-1}{2} \bigcirc$. NOTE ALSO THAT $\frac{P-1}{2}$ divides P-1 AND SO $(\frac{P-1}{2}) \mid (P-1)! - (P-1)$. WE ALSO HAVE $P-1 \mid (P-1)! - (P-1)$. SINCE P IS PRIME WE HAVE $god\left((\frac{P-1}{2}, P) = 1$. THIS SHOWS $(\frac{P-1}{2})$. P Divides (P-1)! - (P-1). THEN $(P-1)! \equiv P-1$. THIS SHOWS $(P-1)! \equiv P-1$ $(mod A+2+3+\dots+(P-1))$.