.
7y,
...l

unves?®

famnit

4,
“ pRimo%

5.1 - Functions

Data Science Practicum 2021/22, Lesson 5.1

Marko Tkal¢i¢

Univerza na Primorskem

Marko Tkal¢i¢, DP-202122-051 1/20

Table of Contents

Functions

Marko Tkal¢i¢, DP-202122-051 2/20

Declaration

= Function blocks begin with the keyword def followed by the function name and
parentheses

= Any input parameters or arguments should be placed within these parentheses. You
can also define parameters inside these parentheses

= The first statement of a function can be an optional statement - the
documentation string of the function or docstring

= The code block within every function starts with a colon (:) and is indented

= The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None

Marko Tkal¢i¢, DP-202122-051 3/20

Declaration

= Function blocks begin with the keyword def followed by the function name and
parentheses

= Any input parameters or arguments should be placed within these parentheses. You
can also define parameters inside these parentheses

= The first statement of a function can be an optional statement - the
documentation string of the function or docstring

= The code block within every function starts with a colon (:) and is indented

= The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None

def functionname(parameters):
"function_docstring
function_suite
return [expression]

Marko Tkal¢i¢, DP-202122-051 3/20

Function

def funi(a):

print(a)
return

help(fun1)

fun(1)

Help on function funl in module __main__:

fun1(a)
"multiline comment
second line

Marko Tkal¢i¢, DP-202122-051 4/20

Calling functions

PASS BY REFERENCE

Marko Tkal¢i¢, DP-202122-051 5/20

Calling functions

PASS BY REFERENCE

def changeme(mylist):
mylist.append([1,2,3,41);
print("Values inside the function: ", mylist)
return

mylist = [10,20,30];

print("Values outside the function: ", mylist)
changeme(mylist);
print(”Values outside the function: ", mylist)

Marko Tkal¢i¢, DP-202122-051 5/20

Calling functions

PASS BY REFERENCE

def changeme(mylist):
mylist.append([1,2,3,41);
print("Values inside the function: ”, mylist)
return

mylist = [10,20,30];

print("Values outside the function: ", mylist)
changeme(mylist);
print("Values outside the function: ", mylist)

Values outside the function: [10, 20, 30]
Values inside the function: [1e, 20, 30, [1, 2, 3, 41]
Values outside the function: [10, 20, 30, [1, 2, 3, 41]

Marko Tkal¢i¢, DP-202122-051 5/20

PAssing variables

= If the value passed in a function is immutable, the function does not modify the
caller’s variable

= If the value is mutable, the function may modify the caller’s variable in-place

def try_to_modify(x, y, z):
x = 23
y.append(42)
z=[
print(x)
print(y)
print(z)

try_to_modify(a, b, c)
print("---")

print(a)

print(b)

print(c)

23

[99, 421
[991

77

[99, 421
[28]

Marko Tkal¢i¢, DP-202122-051 6/20

Namespaces - Variable scope

= Suppose the same name is given to variables in various parts of your code
= How does the interpreter know which value to use?

Marko Tkal¢i¢, DP-202122-051 7/20

amespaces - Variable scope

= Suppose the same name is given to variables in various parts of your code
= How does the interpreter know which value to use?

= Order:

1. Local: If you refer to x inside a function, then the interpreter first searches for it in the
innermost scope that's local to that function.

2. Enclosing: If x isn't in the local scope but appears in a function that resides inside
another function, then the interpreter searches in the enclosing function's scope.

3. Global: If neither of the above searches is fruitful, then the interpreter looks in the global
scope next.

4. Built-in: If it can’t find x anywhere else, then the interpreter tries the built-in scope.

(")

\W

L

Marko Tkal¢i¢, DP-202122-051

7/20

Namespaces - Variable scope

x=5 x=5
def printx(): def printx():
x =10 print(x)
print(x) printx()
printx()
[s
10 |

Marko Tkal¢i¢, DP-202122-051 8/20

Namespaces - Variable scope

x=5 x=5
def printx(): def printx():
x =10 print(x)
print(x) printx()
printx()
[s
10 |
x = 'global'
def fQ:
x = 'enclosing'
def g():
x = 'local’
print(x)
g0
fO

Marko Tkal¢i¢, DP-202122-051 8/20

= Required arguments

= Keyword arguments

= Default arguments

= Variable-length arguments

Marko Tkal¢i¢, DP-202122-051 9/20

Required arguments

def printme(a):
print(a)

printme()

TypeError Traceback (most recent call last)
<ipython-input-17-633999144120> in <module>

2 print(a)

3
---=> 4 printme()

TypeError: printme() missing 1 required positional argument: 'a

Marko Tkal¢i¢, DP-202122-051

10/20

Keyword arguments

def printinfo(name, age):

print(”Name: ", name)
print("Age ", age)
return;

printinfo(age=5¢, name="miki")

Name: miki
Age 50

Marko Tkal¢i¢, DP-202122-051

11/20

Default arguments

def printinfo(name, age=35):

print(”Name: ", name)
print("Age ", age)
return;

printinfo(age=5¢, name="miki")
printinfo(name="miki")

Name: miki

Age 50
Name: miki
Age 35

Marko Tkal¢i¢, DP-202122-051

12/20

Variable-length arguments

= Number of parameters could be unknown at write-time

= An asterisk (*) is placed before the variable name that holds the values of all
non-keyword variable arguments. This tuple remains empty if no additional
arguments are specified during the function call.

def printinfo(argl, *vartuple):
print(argl)
for var in vartuple:
print(var)
return;

printinfo(10)
print("---")
printinfo(70, 60, 50)

Marko Tkal¢i¢, DP-202122-051 13/20

= Function definitions cannot be empty, but if you for some reason have a function
definition with no content, put in the pass statement to avoid getting an error.

def myfunction():
pass

Marko Tkal¢i¢, DP-202122-051 14/20

Table of Contents

Function Exercises

Marko Tkal¢i¢, DP-202122-051 15/20

Exercise

= Create a function showEmployee() in such a way that it should accept employee
name, and it's salary and display both, and if the salary is missing in function call
it should show it as 9000

Marko Tkal¢i¢, DP-202122-051 16/20

Exercise

= Create a function showEmployee() in such a way that it should accept employee

name, and it's salary and display both, and if the salary is missing in function call
it should show it as 9000

def showEmployee(name, salary=9000):
print("Employee”, name, "salary is:", salary)

showEmployee("Ben”, 9000)
showEmployee("Ben")

Marko Tkal¢i¢, DP-202122-051 16/20

Exercise

= Create an inner function to calculate the addition in the following way
= Create an outer function that will accept two parameters a and b
= Create an inner function inside an outer function that will calculate the addition of a and

b
= At last, an outer function will add 5 into addition and return it

17/20

Marko Tkal¢i¢, DP-202122-051

Exercise

= Create an inner function to calculate the addition in the following way

= Create an outer function that will accept two parameters a and b

= Create an inner function inside an outer function that will calculate the addition of a and
b

= At last, an outer function will add 5 into addition and return it

def outerFun(a, b):
def innerFun(a,b):
return atb
add = innerFun(a, b)
return add+5

result = outerFun(5, 10)
print(result)

Marko Tkal¢i¢, DP-202122-051

17/20

Exercise

= write a function that takes as input up to five integers and returns the sum

Marko Tkal¢i¢, DP-202122-051 18/20

Exercise

= write a function that takes as input up to five integers and returns the sum

def mysum(*ints):
s=0
for i in ints:
s +=i
return s

print(mysum())

Marko Tkal¢i¢, DP-202122-051 18/20

Exercise

= write a function that takes as input up to five variables:

= two ints
= two strings
= one list

= and prints out all the values of these variables

Marko Tkal¢i¢, DP-202122-051 19/20

Exercise

= write a function that takes as input up to five variables:

= two ints
= two strings
= one list

= and prints out all the values of these variables

11 = [1,2,3

def myprint(il = 0, i2 =0, s1 ="", s2 = "" 11 = [1):
print(i1,i2,s1,s2,11)

myprint()
myprint(11=11)
myprint(11=11, s2=s2)

oo [1
0o [1,2, 3]
00 def [1, 2, 3]

Marko Tkal¢i¢, DP-202122-051

19/20

References

Part of the material has been taken from the following sources. The usage of the
referenced copyrighted work is in line with fair use since it is for nonprofit educational
purposes.

= https://realpython.com/python-namespaces-scope/

= https://www.tutorialspoint.com/python/python_functions.htm

= https://www.w3schools.com/python/python_functions.asp

= https://pynative.com/python-functions-exercise-with-solutions/

= https://www.w3schools.com/python/python_classes.asp

= https://stackoverflow.com/questions/625083 /what-init-and-self-do-on-python

Marko Tkal¢i¢, DP-202122-051 20/20

	Functions
	Function Exercises

