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5.1 - Functions

Data Science Practicum 2021/22, Lesson 5.1

Marko Tkal¢i¢

Univerza na Primorskem
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Declaration

= Function blocks begin with the keyword def followed by the function name and
parentheses

= Any input parameters or arguments should be placed within these parentheses. You
can also define parameters inside these parentheses

= The first statement of a function can be an optional statement - the
documentation string of the function or docstring

= The code block within every function starts with a colon (:) and is indented

= The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None
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Declaration

= Function blocks begin with the keyword def followed by the function name and
parentheses

= Any input parameters or arguments should be placed within these parentheses. You
can also define parameters inside these parentheses

= The first statement of a function can be an optional statement - the
documentation string of the function or docstring

= The code block within every function starts with a colon (:) and is indented

= The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None

def functionname( parameters ):
"function_docstring
function_suite
return [expression]
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Function

def funi(a):

print(a)
return

help(fun1)

fun(1)

Help on function funl in module __main__:

fun1(a)
"multiline comment
second line
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Calling functions

PASS BY REFERENCE
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Calling functions

PASS BY REFERENCE

def changeme( mylist ):
mylist.append([1,2,3,41);
print( "Values inside the function: ", mylist)
return

mylist = [10,20,30];

print("Values outside the function: ", mylist)
changeme( mylist );
print(”Values outside the function: ", mylist)
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Calling functions

PASS BY REFERENCE

def changeme( mylist ):
mylist.append([1,2,3,41);
print( "Values inside the function: ”, mylist)
return

mylist = [10,20,30];

print("Values outside the function: ", mylist)
changeme( mylist );
print("Values outside the function: ", mylist)

Values outside the function: [10, 20, 30]
Values inside the function: [1e, 20, 30, [1, 2, 3, 41]
Values outside the function: [10, 20, 30, [1, 2, 3, 41]
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PAssing variables

= If the value passed in a function is immutable, the function does not modify the
caller’s variable

= If the value is mutable, the function may modify the caller’s variable in-place

def try_to_modify(x, y, z):
x = 23
y.append(42)
z=[
print(x)
print(y)
print(z)

try_to_modify(a, b, c)
print("---")

print(a)

print(b)

print(c)

23

[99, 421
[991

77

[99, 421
[28]
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Namespaces - Variable scope

= Suppose the same name is given to variables in various parts of your code
= How does the interpreter know which value to use?
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amespaces - Variable scope

= Suppose the same name is given to variables in various parts of your code
= How does the interpreter know which value to use?

= Order:

1. Local: If you refer to x inside a function, then the interpreter first searches for it in the
innermost scope that's local to that function.

2. Enclosing: If x isn't in the local scope but appears in a function that resides inside
another function, then the interpreter searches in the enclosing function's scope.

3. Global: If neither of the above searches is fruitful, then the interpreter looks in the global
scope next.

4. Built-in: If it can’t find x anywhere else, then the interpreter tries the built-in scope.
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Namespaces - Variable scope

x=5 x=5
def printx(): def printx():
x =10 print(x)
print(x) printx()
printx()
[ s
10 |
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Namespaces - Variable scope

x=5 x=5
def printx(): def printx():
x =10 print(x)
print(x) printx()
printx()
[ s
10 |
x = 'global'
def fQ:
x = 'enclosing'
def g():
x = 'local’
print(x)
g0
fO
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= Required arguments

= Keyword arguments

= Default arguments

= Variable-length arguments
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Required arguments

def printme(a):
print(a)

printme()

TypeError Traceback (most recent call last)
<ipython-input-17-633999144120> in <module>

2 print(a)

3
---=> 4 printme()

TypeError: printme() missing 1 required positional argument: 'a
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Keyword arguments

def printinfo( name, age ):

print(”Name: ", name)
print( "Age ", age)
return;

printinfo( age=5¢, name="miki" )

Name: miki
Age 50
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Default arguments

def printinfo( name, age=35 ):

print(”Name: ", name)
print( "Age ", age)
return;

printinfo( age=5¢, name="miki" )
printinfo( name="miki" )

Name: miki

Age 50
Name: miki
Age 35

Marko Tkal¢i¢, DP-202122-051

12/20



Variable-length arguments

= Number of parameters could be unknown at write-time

= An asterisk (*) is placed before the variable name that holds the values of all
non-keyword variable arguments. This tuple remains empty if no additional
arguments are specified during the function call.

def printinfo( argl, *vartuple ):
print(argl)
for var in vartuple:
print(var)
return;

printinfo( 10 )
print("---")
printinfo( 70, 60, 50 )
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= Function definitions cannot be empty, but if you for some reason have a function
definition with no content, put in the pass statement to avoid getting an error.

def myfunction():
pass
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Exercise

= Create a function showEmployee() in such a way that it should accept employee
name, and it's salary and display both, and if the salary is missing in function call
it should show it as 9000
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Exercise

= Create a function showEmployee() in such a way that it should accept employee

name, and it's salary and display both, and if the salary is missing in function call
it should show it as 9000

def showEmployee(name, salary=9000):
print("Employee”, name, "salary is:", salary)

showEmployee("Ben”, 9000)
showEmployee("Ben")
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Exercise

= Create an inner function to calculate the addition in the following way
= Create an outer function that will accept two parameters a and b
= Create an inner function inside an outer function that will calculate the addition of a and

b
= At last, an outer function will add 5 into addition and return it

17/20
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Exercise

= Create an inner function to calculate the addition in the following way

= Create an outer function that will accept two parameters a and b

= Create an inner function inside an outer function that will calculate the addition of a and
b

= At last, an outer function will add 5 into addition and return it

def outerFun(a, b):
def innerFun(a,b):
return atb
add = innerFun(a, b)
return add+5

result = outerFun(5, 10)
print(result)
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Exercise

= write a function that takes as input up to five integers and returns the sum
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Exercise

= write a function that takes as input up to five integers and returns the sum

def mysum(*ints):
s=0
for i in ints:
s +=i
return s

print(mysum())
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Exercise

= write a function that takes as input up to five variables:

= two ints
= two strings
= one list

= and prints out all the values of these variables
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Exercise

= write a function that takes as input up to five variables:

= two ints
= two strings
= one list

= and prints out all the values of these variables

11 = [1,2,3

def myprint(il = 0, i2 =0, s1 ="", s2 = "" 11 = [1):
print(i1,i2,s1,s2,11)

myprint()
myprint(11=11)
myprint(11=11, s2=s2)

oo [1
0o [1,2, 3]
00 def [1, 2, 3]
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