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Counter-current heat exchangers associated with appendages of endotherms

feature bundles of closely applied arteriovenous vessels. The accepted para-

digm is that heat from warm arterial blood travelling into the appendage

crosses into cool venous blood returning to the body. High core temperature

is maintained, but the appendage functions at low temperature. Leatherback

turtles have elevated core temperatures in cold seawater and arteriovenous

plexuses at the roots of all four limbs. We demonstrate that plexuses of

the hindlimbs are situated wholly within the hip musculature, and that, at

the distal ends of the plexuses, most blood vessels supply or drain the hip

muscles, with little distal vascular supply to, or drainage from the limb

blades. Venous blood entering a plexus will therefore be drained from

active locomotory muscles that are overlaid by thick blubber when the

adults are foraging in cold temperate waters. Plexuses maintain high limb

muscle temperature and avoid excessive loss of heat to the core, the reverse of

the accepted paradigm. Plexuses protect the core from overheating generated

by muscular thermogenesis during nesting.
1. Introduction
Limb counter-current heat exchange arrangements have been identified in birds

and mammals living under cold terrestrial or aquatic conditions [1–4]. Heat

exchangers feature bundles of closely applied arterial and venous vessels.

The accepted paradigm is that, under cold conditions, heat from warm arterial

blood travelling into the appendage crosses into the cool venous blood return-

ing towards the body, facilitating maintenance of core body temperature.

However, the corresponding appendage functions at low temperature [5,6].

Dermochelys coriacea is the sole living species of the chelonian family Dermo-

chelyidae, which has a long history (ca 50 Myr) of foraging in cool water [7].

The largest of extant sea turtles, leatherbacks, also have the longest fore- and

hindlimbs [8]. Limb blades are essentially composed of manus and pes. Muscles

that drive them are associated with the pectoral and pelvic girdles, humerus

plus radius and ulna, and femur plus tibia and fibula [8]. Propulsion in

water is produced by synchronous action of the foreflippers, with the hindlimbs

acting as rudders [9] and perhaps elevators. On land, all limbs are involved in

propulsion [10], and the hindlimbs used to excavate nests.

Adult leatherbacks have elevated core temperatures (25–278C) in cold (10.9–

16.78C) surface seawater [11–13] and regularly dive into near-freezing water [14].

Whether the leatherback is endothermic [15], or gigantothermic [16] has been

controversial because of low metabolic rate in adults. Current consensus is that

they derive heat from exercise [13,17,18]. Leatherbacks have arteriovenous
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Figure 1. (a) View of hindlimb from laterodorsal aspect. Skin and superficial connective and adipose tissue have been removed from thigh and tibial areas.
Two dorsal hip muscles are identified. (b) Laterodorsal view of hindquarter vascular plexus. Iliotibialis and flexor tibialis muscles have been parted. Needle indicates
artery curving from distal end of plexus towards hip along posterior surface of iliotibialis. Note numerous vessels leaving/entering plexus that supply/drain flexor
tibialis and ventral hip muscles, plus muscles of digits. Note also that some vessels that supply/drain the flexor tibialis loop hipwards from their connection with the
plexus. (c) Dorsolateral view of distal origin (indicated by needle) of plexus. Cut pelvis and vertebral column (with necropsy cut marks) provide orientation.
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counter-current plexuses at the roots of all four limbs, which

have been assumed to avoid heat loss from the body core [19].

Leatherback turtles swim continuously when in water

[20], even when foraging [13,21]. In cool temperate waters

(14–158C), Atlantic leatherbacks swim at 2.7 km h21 [13],

similar to modal speeds of 2.0–3.0 km h21 recorded off the

US Virgin Islands [22], where sea surface temperatures are

about 288C. Locomotory muscle performance is therefore

little affected by the ranges of latitude and temperature rou-

tinely encountered, implying similar muscle temperatures

in cold and warm environments. Muscular thermogenesis

has not been studied directly in Dermochelys, but has been

investigated in the pectoral muscles of smaller green turtles

(Chelonia mydas [21]). In active adult green turtles, pectoral

muscles were 88C warmer than the sea; other tissues were

not. There is indirect evidence that leatherback forelimb

blades function at lower temperatures than more central tis-

sues; cooled lipid samples taken from blade adipose tissue

initiate crystallization at 118C, whereas samples from cara-

pace fat start to crystallize at 17–188C [23]. Our study

demonstrates that the vascular arrangements of the hindquar-

ter plexus of Dermochelys result in a counter-current function
opposite to that described for birds and mammals exposed to

cold conditions.
2. Methods
Six juvenile leatherbacks (59.5–84.1 cm, straight carapace length,

26.0–70.9 kg body mass) were collected as bycatch by observers

(NOAA Fisheries, Pacific Islands Regional Office, Observer Pro-

gramme) on longline fishing vessels operating in the equatorial

Pacific. Frozen on death, they were in good post-mortem condition.

Turtles were thawed 24 h before routine necropsy and histopathol-

ogy to confirm cause of death [24] (drowning). The hindquarter

plexus and its relationships with hindlimb musculature and

hindlimb anatomy were investigated by gross dissection, tissue

manipulation, histology and digital photography.
3. Results
Dissection of the hindquarter plexus of all six turtles revealed

that its proximal end was at the pelvic girdle and that it ran

deep within the hip muscles, alongside and posterior to

the femur (figure 1a,b). It consisted of numerous bundles of
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Figure 2. (a) Macrophotograph of cut end of plexus. Individual bundles (about 1 mm diameter) have tubular structures within them. (b) Cross section of part of
plexus. Artery (a), vein (v), nerve bundle (n). Circles indicate areas of mixed arteries and veins. Veins are collapsed; arteries with thick smooth muscle walls have
diameter about 25 mm. (c) Schematic diagram of function of hindlimb vascular plexus in Dermochelys coriacea. Black arrows indicate blood flow, white arrows
indicate heat flow. Red indicates arterial supply, blue indicates venous drainage. Limb root blubber not present in hatchlings, juveniles or nesting adult
female turtles, but characteristic of adult turtles on high-latitude feeding grounds [25].
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closely applied veins and arteries interspersed with nerve

bundles (figure 2a,b) as is normal in vertebrate limbs. No

venous valves were seen. The two types of closely packed

vessels are known to be arranged randomly, but with more

veins than arteries [19]. The plexus was situated wholly

within the core of the thigh musculature; it did not project

beyond the knee joint into the lower limb and foot. Distally,

most of the plexus broke up into less-packed vessels that sup-

plied the hip muscles before the knee was reached. It was

evident that some vessels that supply/drain the hip muscles

loop proximally from the distal part of the plexus. In conse-

quence, in the live animal, where the hip muscles are close

to one another, the looped vessels will also be close to the

plexus. This means that, upon circulating to the limb, some

distally directed arterial blood in the plexus will flow proxi-

mally, whereas some venous blood will flow distally before

entering the plexus and flowing proximally.

4. Discussion
The anatomical arrangements of leatherback hindlimb

plexuses appear incompatible with accepted function [5,6,19]
for counter-current heat exchangers. Instead of the limbs

having lower temperatures than the body core, we believe

that the exchangers function primarily to retain thermogenic

heat within the locomotory muscles themselves (see figure 2c
for schematic diagram), thus allowing the muscles to be kept

warm enough to work effectively in cold water, even though

hindlimb function is primarily for steering [9] and may be

mostly isometric. This implies that the muscle temperatures

will usually be above those of the core, and also that the

muscles generate enough heat for some to be transferred to

the core, where large body size and very effective insulation

will combine to retain it and thus maintain a steady 25–278C
core temperature [11–13].

Bird tibiotarsal counter-current vascular arrangements

are phylogenetically/structurally varied [2], some species

having complex intermingled networks of arteries and

veins (rete), others having arrangements in which a single

artery is surrounded by counter-current veins (venae comi-

tantes). The lower bird leg is largely composed of bones

(tarsometatarsi), tendons and skin with little muscle. In all

cases, the exchanger is in the distal tibiotarsal region, so

that returning cold blood is already warmed before it
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passes through the muscular femoral region. The intramus-

cular placement of the leatherback plexuses is the reverse of

this arrangement.

Overheating is a risk for Dermochelys in the tropics. Adults

shuttle between warm surface waters and cool deeper water,

thereby moderating their body temperatures [26,27]. Nesting

female leatherback turtles (which use their hindlimbs for

locomotion and nest digging) have core body temperatures

of about 328C (around 8–108C above air/sand temperatures

and 2.5–58C above surface seawater temperatures) [28]. We

suggest that our model of counter-current heat exchange

(figure 2c) will protect the core against hyperthermia, by

retaining heat generated by muscular thermogenesis within

the limb musculature; enhanced blood perfusion of the tur-

tle’s skin (nesting turtles show flushed forearms/wrists,

throats and undersides) will aid heat dispersion, working

synergistically with plexus function.

In summary, the adult leatherback turtle exhibits a

different form of endothermy in cold water from that exhib-

ited by birds and mammals. Instead of depending upon

heat generated by central nutrient-derived thermogenesis

in the liver, Dermochelys relies upon continuous exercise of

the peripheral locomotory muscles to generate heat that

keeps them warm and is mostly retained in the musculature

by counter-current heat exchange. Endogenous heat trans-

ferred from muscles to core is held there by thermal inertia
and effective insulation, rather than by counter-current heat

exchange.
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