.
7y,
‘.l

unves?®

famnit

4,
“ pRimo%

7 - Numpy

Data Science Practicum 2021/22, Lesson 7

Marko Tkal¢i¢

Univerza na Primorskem

Marko Tkal¢i¢, DP-202122-07 1/47

Table of Contents

Numpy

Marko Tkal¢i¢, DP-202122-07 2/47

= NumPy is a python library used for working with arrays.
= Mathematical and logical operations on arrays.
= Fourier transforms and routines for shape manipulation.

= Operations related to linear algebra and random number generation.

Marko Tkal¢i¢, DP-202122-07 3/47

= In Python we have lists that serve the purpose of arrays, but they are slow to

process.

= NumPy aims to provide an array object that is up to 50x faster that traditional
Python lists.

= The array object in NumPy is called ndarray, it provides a lot of supporting
functions that make working with ndarray very easy.

= Arrays are very frequently used in data science, where speed and resources are very

important.

Marko Tkal¢i¢, DP-202122-07 4/47

Scipy

= Numpy: a high-performance multidimensional array and basic tools to manipulate
these arrays.
= SciPy: a large number of functions that operate on numpy arrays
= Vector quantization / Kmeans
= Physical and mathematical constants
= Fourier transform
= Integration routines
= Interpolation
= Data input and output
= Linear algebra routines
= n-dimensional image package
= Orthogonal distance regression
= Optimization
= Signal processing
= Sparse matrices
= Spatial data structures and algorithms
= Any special mathematical functions
= Statistics

Marko Tkal¢i¢, DP-202122-07 5/47

SciPy vs Numpy

= unclear distinction
= the scipy __init__ method executes a

from numpy import *

= hence, all numpy functions are available to scipy
= historical perspective:

In an ideal world, NumPy would contain nothing but the array data type and the most
basic operations: indexing, sorting, reshaping, basic element-wise functions, etc. All
numerical code would reside in SciPy. However, one of NumPy's important goals is
compatibility, so NumPy tries to retain all features supported by either of its
predecessors. Thus NumPy contains some linear algebra functions, even though these
more properly belong in SciPy. In any case, SciPy contains more fully-featured versions
of the linear algebra modules, as well as many other numerical algorithms. If you are
doing scientific computing with python, you should probably install both NumPy and
SciPy. Most new features belong in SciPy rather than NumPy.

Marko Tkal¢i¢, DP-202122-07 6/47

Numpy ndarray

= We can create a NumPy ndarray object by using the array() function.

import numpy as np
arr = np.array([1, 2, 3, 4, 51)
print(arr)

print(type(arr))

[12345]
<class 'numpy.ndarray'>

Marko Tkal¢i¢, DP-202122-07

7/47

Numpy ndarray

= We can create a NumPy ndarray object by using the array() function.

import numpy as np
arr = np.array([1, 2, 3, 4, 51)
print(arr)

print(type(arr))

[12345]
<class 'numpy.ndarray'>

= To create an ndarray, we can pass a list, tuple or any array-like object into the
array() method, and it will be converted into an ndarray:

import numpy as np

arr = np.array((l, 7, 3, 4, 5)

print(arr)

Marko Tkal¢i¢, DP-202122-07 7/47

= 0-D arrays (scalars)

import numpy as np

arr = np.array(4”)

print(arr)

Marko Tkal¢i¢, DP-202122-07 8/47

= 0-D arrays (scalars)

import numpy as np

arr = np.array(4”)

print(arr)

= 1-D array (vector): has 0-D arrays as its elements

import numpy as np

arr = np.array([1, 2, 3, 4, 51)

print(arr)

8/47

Marko Tkal¢i¢, DP-202122-07

= 0-D arrays (scalars)

import numpy as np

arr = np.array(4”)

print(arr)

= 1-D array (vector): has 0-D arrays as its elements

import numpy as np
arr = np.array([1, 2, 3, 4, 51)

print(arr)

= 2-D array (matrix): has 1-D arrays as its elements

import numpy as np
arr = np.array(C[1, 2, 31, [4, 5, 611

print(arr)

[2 3]
[4 5 61]

8/47

Marko Tkal¢i¢, DP-202122-07

= 3-D array (3rd order tensor): has 2-D arrays (matrices) as its elements

import numpy as np

arr = np.array([LL1, 2, 31, [4, 5, 611, [[1, 2, 31, [4, 5, 6111)

print(arr)

[CL1 2 3]
[4 5 61]

[0 2 3]
[4 5 6111

Marko Tkal¢i¢, DP-202122-07

9/47

Check Dimensions

import numpy as np

= np.array(42)

np.array([1, 2, 3, 4, 51)

= np.array([[1, 2, 31, [4, 5, 611)

np.array(LCCT, 2, 31, [4, 5, 611, [0, 2, 31, [4, 5, 6111)

Qo oo
n

print(a.ndim)
print(b.ndim)
print(c.ndim)
print(d.ndim)

W=

Marko Tkal¢i¢, DP-202122-07 10/47

Accessing Elements

import numpy as np

arr = np.array([1, 2, 3, 41)

print(arr[2] + arr[31)

Marko Tkal¢i¢, DP-202122-07 11/47

Accessing Elements

import numpy as np
arr = np.array([1, 2, 3, 41)

print(arr[2] + arr[31)

= for matrices: arr[row,col]

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,1011)

print('2nd element on 1st dim: ', arr[0, 11)

2nd element on 1st dim: 2

Marko Tkal¢i¢, DP-202122-07 11/47

Accessing Elements

import numpy as np

arr = np.array([1, 2, 3, 41)

print(arr[2] + arr[31)

= for matrices: arr[row,col]

import numpy as np

011)

arr = np.array([[1,2,3,4,5], [6,7

print('2nd element on 1st dim: ', arr[0, 11)

2nd element on 1st dim: 2

import numpy as np
arr = np.array(L[1,2,3,4,5], [6,7,8,9,1011)

print('5th element on 2nd dim: ', arr[1, 41)

Sth element on 2nd dim: 10

Marko Tkal¢i¢, DP-202122-07 11/47

Accessing Mult

import numpy as np

arr = np.array([L[1, 2, 3], [4, 5, 611, [[7, 8, 91, [1e, 11, 12]111)

print(arr[o, 1, 21)

= 0->[[1, 2, 31, [4, 5, 61]
= 1->[4, 5, 6]
= 2->6

Marko Tkal¢i¢, DP-202122-07 12/47

Negative Indexing

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]1)

print('Last element from 2nd dim: ', arr[1, -1])

Last element from 2nd dim: 10

Marko Tkal¢i¢, DP-202122-07 13/47

Slicing

= [start:end:step]
= |If we don't pass start its considered 0

If we don't pass end its considered length of array in that dimension
= |f we don't pass step its considered 1

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 71)

print(arr[1:51)

[2 3 4 5]

Marko Tkal¢i¢, DP-202122-07 14/47

Numpy Data Types

= |- integer

= b - boolean

= u - unsigned integer
s f- float

= c - complex float

= m - timedelta

= M - datetime

= O - object

= S - string

= U - unicode string

= V - fixed chunk of memory for other type (void)

import numpy as np

arr = np.array([1, 2, 3, 41)

print(arr.dtype)

int32

Marko Tkal¢i¢, DP-202122-07 15/47

Creating Arrays With a Defined Data Type

import numpy as np
arr = np.array([1, 2, 3, 41, dtype='S")

print(arr)
print(arr.dtype)

[b'1' b'2' b'3' b'4']
Is1

Marko Tkal¢i¢, DP-202122-07 16/47

Converting Data Type on Existing Arrays

import numpy as np
arr = np.array([1.1, 2.1, 3.11)
newarr = arr.astype('i')

print(newarr)
print(newarr.dtype)

[123]
int32

Marko Tkal¢i¢, DP-202122-07 17/47

= Copy

= View

import numpy as np

arr = np.array([1, 7, 2, 4,

x = arr.copy()
arr[o] = 42

print(arr)
print(x)

import numpy as np

arr = np.array([1, 2, 3, 4

x = arr.view()
arr[o] = 42
x[1] =

print(arr)
print(x)

[42 2 3 4 5]
[12345]

Marko Tkal¢i¢, DP-202122-07

[42 31 3 4 5]
[42 31 3 4 5]

import numpy as np

arr = np.array(L[1, 2, 3, 41, [5, 6, 7, 81])

print(arr.shape)

@2, 4

19/47

Marko Tkal¢i¢, DP-202122-07

Reshape

= Reshape From 1-D to 2-D

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 2)
print(newarr)

L1 2 3]
[4 5 6]
[7 8 9]
[1e 11 121]

Marko Tkal¢i¢, DP-202122-07

20/47

Reshape

= Reshape From 1-D to 2-D

arr = np.array([1, 2, 3, 4, 5
newarr = arr.reshape(4, 2)
print(newarr)

L1 2 3]
[4 5 6]
L7 8 9]
[1e 11 121]

= Reshape From 1-D to 3-D

arr = np.array([1, 2, 3, 4, 5, 6, 7
newarr = arr.reshape(”, 2,)
print(newarr)

[CC1 2]
[3 4]
[5 61]

L7 8]
[910]
[11 12111

= We can reshape in any shape, as long as the elements required for reshaping are
equal in both shapes

Marko Tkal¢i¢, DP-202122-07

20/47

Iterating

import numpy as np
arr = np.array([[1, 2, 31, [4, 5, 611)
for x in arr:

for y in x:
print(y)

o u s w N

Marko Tkal¢i¢, DP-202122-07

21/47

Ranges

= arange: Return evenly spaced values within a given interval.

’ numpy .arange([start,]stop, [step, Jdtype=None) |

’ np.arange(3,7,2) |

= When using a non-integer step, such as 0.1, the results will often not be consistent.
It is better to use numpy.linspace for these cases.

Marko Tkal¢i¢, DP-202122-07 22/47

Ranges

= arange: Return evenly spaced values within a given interval.

’ numpy .arange([start,]stop, [step, Jdtype=None)

’ np.arange(3,7,2)

When using a non-integer step, such as 0.1, the results will often not be consistent
It is better to use numpy.linspace for these cases.

= Linspace: Evenly spaced numbers over a specified interval.

a = np.linspace(1, 10, num=10)
print(a)

[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

Marko Tkal¢i¢, DP-202122-07

22/47

Vector operations

[2+3
241,

S

v = np.array([2,2])
u = np.array([3,1])
s=v+tu

Marko Tkal¢i¢, DP-202122-07

23/47

Vector operations

[2+3
241,

<

= np.array([2,21)
= np.array([3,1])
s=v+tu

=

Hadamard product

= np.array([2,2])

<

S

= np.array([3,11)
s=vru

[6 21

Marko Tkal¢i¢, DP-202122-07

23/47

Vector operations

[2+3
241,

v = np.array([2,21)
u = np.array([3,1])
s=v+tu

= Hadamard product

v = np.array([2,2])
u = np.array([3,11)
s=v#*u

[6 21

= Dot product

v = np.array([2,2])
u = np.array([3,1])
s = np.dot(v,u)
print(s)

8

Marko Tkal¢i¢, DP-202122-07

23/47

Joining Arrays

import numpy as np

arrl = np.array([1, 2, 31)

arr2 = np.array([4, 5, 61)

arr = np.concatenate((arri1, arr2))

print(arr)

= we join arrays by axes

= if not specified, is 0 (i.e. first dimension)

[123456]

Marko Tkal¢i¢, DP-202122-07 24/47

Joining Arrays

import numpy as np

arrl = np.array([[1, 21, [3, 41])

arr2 = np.array([[5, 61, [7, 8]1)

arr = np.concatenate((arrl, arr2), axis=1)

print(arr)

[[1256]
[3 47 8]]

Marko Tkal¢i¢, DP-202122-07 25/47

Stacking

= Joining along a new axis

= 2 1-D arrays become a 2-D array

import numpy as np

arrl = np.array([1, 2, 31)

arr2 = np.array([4, 5, 61)

arr = np.stack((arrl, arr2), axis=1)

print(arr)

[41
[2 5]
[3 611

Marko Tkal¢i¢, DP-202122-07

26/47

Search

= Return an index matching the query

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 4, 41)
X = np.where(arr == 4)

print(x)

(array([3, 5, 61, dtype=int64),)

Marko Tkal¢i¢, DP-202122-07

27/47

import numpy as np

arr = np.array(['banana', 'cherry', 'apple'l])

print(np.sort(arr))

Marko Tkal¢i¢, DP-202122-07 28/47

Filtering

import numpy as np

arr = np.array([41, 42, 43, 44])
filter_arr = arr > 42

newarr = arr[filter_arr]

print(filter_arr)
print(newarr)

[False False True Truel
[43 44]

Marko Tkal¢i¢, DP-202122-07 29/47

Random

= 0-1

from numpy import random

x = random. rand()

print(x)

Marko Tkal¢i¢, DP-202122-07 30/47

Random

= 0-1

from numpy import random
x = random. rand()

print(x)

= random integer 0,100

from numpy import random

x = random.randint(102)

print(x)

Marko Tkal¢i¢, DP-202122-07

30/47

Random

= 0-1

from numpy import random
x = random. rand()

print(x)

= random integer 0,100

from numpy import random
x = random.randint(100)

print(x)

from numpy import random
x = random.randint(100, size=(3, 5))

print(x)

Marko Tkal¢i¢, DP-202122-07

30/47

Random

import numpy as np

mu = 15

sigma = 5

size=5000

my_sample = np.random.normal(mu, sigma, size)

31/47

Marko Tkal¢i¢, DP-202122-07

Random

import numpy as np

mu = 15

sigma = ©

size=5000

my_sample = np.random.normal(mu, sigma, size)

from numpy import random

x = random.normal(size=(~, 3))

print(x)

[[0.04544007 1.96473935 -0.15858358]
[-0.20709777 -1.40407508 -1.08589647]1]

Marko Tkal¢i¢, DP-202122-07

31/47

Random

import numpy as np

my_sample = np.random.normal(mu, sigma, size)

from numpy import random

x = random.normal(size=(2, 3))

print(x)

[[0.04544007 1.96473935 -0.15858358]
[-0.20709777 -1.40407508 -1.08589647]1]

from numpy import random
x = random.uniform(size=(2, 3))

print(x)

[[0.90171773 0.95619308 0.22216792]
[0.91454814 ©.78921139 0.54851748]]

Marko Tkal¢i¢, DP-202122-07 31/47

Table of Contents

Numpy Exercises

Marko Tkal¢i¢, DP-202122-07 32/47

Exercise

= create an array with the elements [2,6,3,4,7]

Marko Tkal¢i¢, DP-202122-07 33/47

Exercise

= create an array with the elements [2,6,3,4,7]

a = np.array([2,6,3,4,71)
a

Marko Tkal¢i¢, DP-202122-07 33/47

Exercise - arange()

= create an array that contains even values from 1 to 15, i.e. 1,3,5...15

a = np.arange(1,16,2)
a

Marko Tkal¢i¢, DP-202122-07 34/47

Exercise

= create an array with the elements [1,3,5,7,9]

Marko Tkal¢i¢, DP-202122-07 35/47

Exercise

= create an array with the elements [1,3,5,7,9]

a = np.array([1,3,5,7,91)
a

d = np.arange(1,10,2)
d

e = np.linspace(l, 9, 5)
e

Marko Tkal¢i¢, DP-202122-07

35/47

Exercise

= create an array with elements [0 1 2 3 4 56 7 8 9]
= given the notation from:to

= print all the elements of the array
= print the first three elements
= print the second to fourth element
= print the last three elements

Marko Tkal¢i¢, DP-202122-07 36/47

Exercise

= create an array with elements [0 1 2 3 4 56 7 8 9]
= given the notation from:to

= print all the elements of the array

= print the first three elements

= print the second to fourth element

= print the last three elements

X = np.arange(0)

print(x)
print(x[:31)
print(x[1:41)
print(x[-2:1)

[61234567809]
[0 1 2]
[123]
[7 8 9]

Marko Tkal¢i¢, DP-202122-07

36/47

Exercise

= given the notation from:to:step
= print every third element starting from the second

Marko Tkal¢i¢, DP-202122-07 37/47

Exercise

= given the notation from:to:step

= print every third element starting from the second

a = np.arange(0, 10)
print(a)

b = a[1:10:3]
print(b)

[6123456789]
[147]

Marko Tkal¢i¢, DP-202122-07 37/47

Exercise

= given the notation from:to:step
= if we omit from and to it assumes from=0 and to=length

= get every second element
= get every third element
= reverse the order

Marko Tkal¢i¢, DP-202122-07 38/47

Exercise

= given the notation from:to:step
= if we omit from and to it assumes from=0 and to=length
= get every second element

= get every third element
= reverse the order

print(x[::
print(x[:
print(x[::

[02468]
[0 36 9]
[98765432180]

Marko Tkal¢i¢, DP-202122-07

38/47

Exercise - reshape

= create a 5x5 matrix with values from 0 to 24

Marko Tkal¢i¢, DP-202122-07 39/47

Exercise - reshape

= create a 5x5 matrix with values from 0 to 24

x = np.arange(25).reshape(5, 5)
print(x)

[Ce 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]1]

Marko Tkal¢i¢, DP-202122-07 39/47

Exercise

= given the array from above, get the first two columns and the first two rows
= hint: slice per every dimension

Marko Tkal¢i¢, DP-202122-07 40/47

Exercise

= given the array from above, get the first two columns and the first two rows
= hint: slice per every dimension

print(x[:2, :21)

[fe 11
[5 611

Marko Tkal¢i¢, DP-202122-07 40/47

Exercise

= Get every third column of every second row

Marko Tkal¢i¢, DP-202122-07 41/47

Exercise

= Get every third column of every second row

y = x[::2, ::3]
print(y)

[[eo 3]
[10 13]
[20 231]

Marko Tkal¢i¢, DP-202122-07 41/47

Exercise

= np.random.randint(low,high)

= np.random.normal(mean, std, num)

= .shape

= create a 2D array with random dimensions from 1 to 5

= fill it with random variables drawn from a random distribution with mean=10
standard deviation=3

= use shape to print out the number of columns

Marko Tkal¢i¢, DP-202122-07 42/47

Exercise

= np.random.randint(low,high)
= np.random.normal(mean, std, num)

= . shape

create a 2D array with random dimensions from 1 to 5

fill it with random variables drawn from a random distribution with mean=10
standard deviation=3

= use shape to print out the number of columns

x

= np.random.randint(1,5)

y = np.random.randint(1,5)

a = np.random.normal(10,3,x*y)
b = a.reshape(x,y)

print(b)

s = b.shape

print(s[1])

[[10.33272803 13.22042969]
[10.93450619 10.3011933]
[6.33357001 10.69188525]]
2

Marko Tkal¢i¢, DP-202122-07 42/47

Exercise - indeces

= create an array with 6 random integers from 0 to 10
= using an index array, print the first, second to last, and last element

Marko Tkal¢i¢, DP-202122-07 43/47

Exercise - indeces

= create an array with 6 random integers from 0 to 10

= using an index array, print the first, second to last, and last element

X = np.random.randint(®, 10, 6)
print(x)

indices = [0, -2, -1]
print(x[indices])

[174925]
[12 5]

Marko Tkal¢i¢, DP-202122-07 43/47

Exercise

= create an array with elements from 0 to 4
= create a boolean array of indexes where the value of the first array is bigger than 2
= use the index array to create a new array that contains only elements >2

Marko Tkal¢i¢, DP-202122-07 44/47

Exercise

= create an array with elements from 0 to 4

create a boolean array of indexes where the value of the first array is bigger than 2
use the index array to create a new array that contains only elements >2

X = np.arange(-)
print(x)
i=x>2
print(i)
print(x[il)

[01234]
[False False False True Truel
[3 4]

Marko Tkal¢i¢, DP-202122-07

44/47

Exercise

= Create an array from O to 26 assign it to a variable x

Marko Tkal¢i¢, DP-202122-07 45/47

Exercise

= Create an array from O to 26 assign it to a variable x

X = np.arange(9,27)
X

= Reverse the order of the array and print it out

Marko Tkal¢i¢, DP-202122-07

45/47

Exercise

= Create an array from O to 26 assign it to a variable x

X = np.arange(9,27)
X

= Reverse the order of the array and print it out

y = x[::-1]
print(y)

= Convert the 1-dimensional array you created into a 3 dimensional array

Marko Tkal¢i¢, DP-202122-07 45/47

Exercise

= Create an array from O to 26 assign it to a variable x

x = np.arange(9,27
X

= Reverse the order of the array and print it out

y = x[::-1]
print(y)

= Convert the 1-dimensional array you created into a 3 dimensional array

z = y.reshape((3,3,3))
print(z)

[LC[26 25 24]
[23 22 21]
[20 19 1811

[[17 16 15]
[14 13 12]
[11 10 911

-
Rl

61
3]
0111

NG
- a N

Marko Tkal¢i¢, DP-202122-07 45/47

Standardization

= Create a vector of 10 elements with normal distribution
= px =50
" ox=5

= Perform standardization on the array:

i

xi . X — MUx
td —

Si Ox

Marko Tkal¢i¢, DP-202122-07 46/47

Standardization

Create a vector of 10 elements with normal distribution
= px =50
" ox=5

= Perform standardization on the array:

i

xi . X — MUx
td —

s Ox

L]

Perform min-max normalization

i .
i _ X = Xmin
Xnorm =

Xmax — Xmin

Marko Tkal¢i¢, DP-202122-07

46/47

References

Part of the material has been taken from the following sources. The usage of the
referenced copyrighted work is in line with fair use since it is for nonprofit educational
purposes.

= https://www.w3schools.com/python/numpy__intro.asp

= https://www.tutorialspoint.com/numpy/numpy_introduction.htm

= https://cs231n.github.io/python-numpy-tutorial /#scipy

= https://www.scipy.org/scipylib/faq.html#numpy-vs-scipy-vs-other-packages

Marko Tkal¢i¢, DP-202122-07 47/47

	Numpy
	Numpy Exercises

