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= NumPy is a python library used for working with arrays.
= Mathematical and logical operations on arrays.
= Fourier transforms and routines for shape manipulation.

= Operations related to linear algebra and random number generation.
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= In Python we have lists that serve the purpose of arrays, but they are slow to

process.

= NumPy aims to provide an array object that is up to 50x faster that traditional
Python lists.

= The array object in NumPy is called ndarray, it provides a lot of supporting
functions that make working with ndarray very easy.

= Arrays are very frequently used in data science, where speed and resources are very

important.
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Scipy

= Numpy: a high-performance multidimensional array and basic tools to manipulate
these arrays.
= SciPy: a large number of functions that operate on numpy arrays
= Vector quantization / Kmeans
= Physical and mathematical constants
= Fourier transform
= Integration routines
= Interpolation
= Data input and output
= Linear algebra routines
= n-dimensional image package
= Orthogonal distance regression
= Optimization
= Signal processing
= Sparse matrices
= Spatial data structures and algorithms
= Any special mathematical functions
= Statistics
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SciPy vs Numpy

= unclear distinction
= the scipy __init__ method executes a

from numpy import *

= hence, all numpy functions are available to scipy
= historical perspective:

In an ideal world, NumPy would contain nothing but the array data type and the most
basic operations: indexing, sorting, reshaping, basic element-wise functions, etc. All
numerical code would reside in SciPy. However, one of NumPy's important goals is
compatibility, so NumPy tries to retain all features supported by either of its
predecessors. Thus NumPy contains some linear algebra functions, even though these
more properly belong in SciPy. In any case, SciPy contains more fully-featured versions
of the linear algebra modules, as well as many other numerical algorithms. If you are
doing scientific computing with python, you should probably install both NumPy and
SciPy. Most new features belong in SciPy rather than NumPy.
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Numpy ndarray

= We can create a NumPy ndarray object by using the array() function.

import numpy as np
arr = np.array([1, 2, 3, 4, 51)
print(arr)

print(type(arr))

[12345]
<class 'numpy.ndarray'>
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Numpy ndarray

= We can create a NumPy ndarray object by using the array() function.

import numpy as np
arr = np.array([1, 2, 3, 4, 51)
print(arr)

print(type(arr))

[12345]
<class 'numpy.ndarray'>

= To create an ndarray, we can pass a list, tuple or any array-like object into the
array() method, and it will be converted into an ndarray:

import numpy as np

arr = np.array((l, 7, 3, 4, 5)

print(arr)
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= 0-D arrays (scalars)

import numpy as np

arr = np.array(4”)

print(arr)
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= 0-D arrays (scalars)

import numpy as np

arr = np.array(4”)

print(arr)

= 1-D array (vector): has 0-D arrays as its elements

import numpy as np

arr = np.array([1, 2, 3, 4, 51)

print(arr)

8/47
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= 0-D arrays (scalars)

import numpy as np

arr = np.array(4”)

print(arr)

= 1-D array (vector): has 0-D arrays as its elements

import numpy as np
arr = np.array([1, 2, 3, 4, 51)

print(arr)

= 2-D array (matrix): has 1-D arrays as its elements

import numpy as np
arr = np.array(C[1, 2, 31, [4, 5, 611

print(arr)

[ 2 3]
[4 5 61]

8/47
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= 3-D array (3rd order tensor): has 2-D arrays (matrices) as its elements

import numpy as np

arr = np.array([LL1, 2, 31, [4, 5, 611, [[1, 2, 31, [4, 5, 6111)

print(arr)

[CL1 2 3]
[4 5 61]

[0 2 3]
[4 5 6111
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Check Dimensions

import numpy as np

= np.array(42)

np.array([1, 2, 3, 4, 51)

= np.array([[1, 2, 31, [4, 5, 611)

np.array(LCCT, 2, 31, [4, 5, 611, [0, 2, 31, [4, 5, 6111)

Qo oo
n

print(a.ndim)
print(b.ndim)
print(c.ndim)
print(d.ndim)

W=
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Accessing Elements

import numpy as np

arr = np.array([1, 2, 3, 41)

print(arr[2] + arr[31)
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Accessing Elements

import numpy as np
arr = np.array([1, 2, 3, 41)

print(arr[2] + arr[31)

= for matrices: arr[row,col]

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,1011)

print('2nd element on 1st dim: ', arr[0, 11)

2nd element on 1st dim: 2
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Accessing Elements

import numpy as np

arr = np.array([1, 2, 3, 41)

print(arr[2] + arr[31)

= for matrices: arr[row,col]

import numpy as np

011)

arr = np.array([[1,2,3,4,5], [6,7

print('2nd element on 1st dim: ', arr[0, 11)

2nd element on 1st dim: 2

import numpy as np
arr = np.array(L[1,2,3,4,5], [6,7,8,9,1011)

print('5th element on 2nd dim: ', arr[1, 41)

Sth element on 2nd dim: 10
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Accessing Mult

import numpy as np

arr = np.array([L[1, 2, 3], [4, 5, 611, [[7, 8, 91, [1e, 11, 12]111)

print(arr[o, 1, 21)

= 0->[[1, 2, 31, [4, 5, 61]
= 1->[4, 5, 6]
= 2->6
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Negative Indexing

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]1)

print('Last element from 2nd dim: ', arr[1, -1])

Last element from 2nd dim: 10
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Slicing

= [start:end:step]
= |If we don't pass start its considered 0

If we don't pass end its considered length of array in that dimension
= |f we don't pass step its considered 1

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 71)

print(arr[1:51)

[2 3 4 5]
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Numpy Data Types

= |- integer

= b - boolean

= u - unsigned integer
s f- float

= c - complex float

= m - timedelta

= M - datetime

= O - object

= S - string

= U - unicode string

= V - fixed chunk of memory for other type ( void )

import numpy as np

arr = np.array([1, 2, 3, 41)

print(arr.dtype)

int32
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Creating Arrays With a Defined Data Type

import numpy as np
arr = np.array([1, 2, 3, 41, dtype='S")

print(arr)
print(arr.dtype)

[b'1' b'2' b'3' b'4']
Is1
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Converting Data Type on Existing Arrays

import numpy as np
arr = np.array([1.1, 2.1, 3.11)
newarr = arr.astype('i')

print(newarr)
print(newarr.dtype)

[123]
int32
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= Copy

= View

import numpy as np

arr = np.array([1, 7, 2, 4,

x = arr.copy()
arr[o] = 42

print(arr)
print(x)

import numpy as np

arr = np.array([1, 2, 3, 4

x = arr.view()
arr[o] = 42
x[1] =

print(arr)
print(x)

[42 2 3 4 5]
[12345]
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import numpy as np

arr = np.array(L[1, 2, 3, 41, [5, 6, 7, 81])

print(arr.shape)

@2, 4

19/47
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Reshape

= Reshape From 1-D to 2-D

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 2)
print(newarr)

L1 2 3]
[4 5 6]
[7 8 9]
[1e 11 121]
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Reshape

= Reshape From 1-D to 2-D

arr = np.array([1, 2, 3, 4, 5
newarr = arr.reshape(4, 2)
print(newarr)

L1 2 3]
[4 5 6]
L7 8 9]
[1e 11 121]

= Reshape From 1-D to 3-D

arr = np.array([1, 2, 3, 4, 5, 6, 7
newarr = arr.reshape(”, 2, )
print(newarr)

[CC1 2]
[3 4]
[5 61]

L7 8]
[910]
[11 12111

= We can reshape in any shape, as long as the elements required for reshaping are
equal in both shapes
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Iterating

import numpy as np
arr = np.array([[1, 2, 31, [4, 5, 611)
for x in arr:

for y in x:
print(y)

o u s w N
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Ranges

= arange: Return evenly spaced values within a given interval.

’ numpy .arange([start, ]stop, [step, Jdtype=None) |

’ np.arange(3,7,2) |

= When using a non-integer step, such as 0.1, the results will often not be consistent.
It is better to use numpy.linspace for these cases.

Marko Tkal¢i¢, DP-202122-07 22/47



Ranges

= arange: Return evenly spaced values within a given interval.

’ numpy .arange([start, ]stop, [step, Jdtype=None)

’ np.arange(3,7,2)

When using a non-integer step, such as 0.1, the results will often not be consistent
It is better to use numpy.linspace for these cases.

= Linspace: Evenly spaced numbers over a specified interval.

a = np.linspace(1, 10, num=10)
print(a)

[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

Marko Tkal¢i¢, DP-202122-07
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Vector operations

[2+3
241,

S

v = np.array([2,2])
u = np.array([3,1])
s=v+tu

Marko Tkal¢i¢, DP-202122-07
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Vector operations

[2+3
241,

<

= np.array([2,21)
= np.array([3,1])
s=v+tu

=

Hadamard product

= np.array([2,2])

<

S

= np.array([3,11)
s=vru

[6 21
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Vector operations

[2+3
241,

v = np.array([2,21)
u = np.array([3,1])
s=v+tu

= Hadamard product

v = np.array([2,2])
u = np.array([3,11)
s=v#*u

[6 21

= Dot product

v = np.array([2,2])
u = np.array([3,1])
s = np.dot(v,u)
print(s)

8
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Joining Arrays

import numpy as np

arrl = np.array([1, 2, 31)

arr2 = np.array([4, 5, 61)

arr = np.concatenate((arri1, arr2))

print(arr)

= we join arrays by axes

= if not specified, is 0 (i.e. first dimension)

[123456]
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Joining Arrays

import numpy as np

arrl = np.array([[1, 21, [3, 41])

arr2 = np.array([[5, 61, [7, 8]1)

arr = np.concatenate((arrl, arr2), axis=1)

print(arr)

[[1256]
[3 47 8]]
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Stacking

= Joining along a new axis

= 2 1-D arrays become a 2-D array

import numpy as np

arrl = np.array([1, 2, 31)

arr2 = np.array([4, 5, 61)

arr = np.stack((arrl, arr2), axis=1)

print(arr)

[ 41
[2 5]
[3 611
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Search

= Return an index matching the query

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 4, 41)
X = np.where(arr == 4)

print(x)

(array([3, 5, 61, dtype=int64),)
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import numpy as np

arr = np.array(['banana', 'cherry', 'apple'l])

print(np.sort(arr))
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Filtering

import numpy as np

arr = np.array([41, 42, 43, 44])
filter_arr = arr > 42

newarr = arr[filter_arr]

print(filter_arr)
print(newarr)

[False False True Truel
[43 44]
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Random

= 0-1

from numpy import random

x = random. rand()

print(x)
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Random

= 0-1

from numpy import random
x = random. rand()

print(x)

= random integer 0,100

from numpy import random

x = random.randint(102)

print(x)
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Random

= 0-1

from numpy import random
x = random. rand()

print(x)

= random integer 0,100

from numpy import random
x = random.randint(100)

print(x)

from numpy import random
x = random.randint(100, size=(3, 5))

print(x)

Marko Tkal¢i¢, DP-202122-07
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Random

import numpy as np

mu = 15

sigma = 5

size=5000

my_sample = np.random.normal(mu, sigma, size)

31/47
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Random

import numpy as np

mu = 15

sigma = ©

size=5000

my_sample = np.random.normal(mu, sigma, size)

from numpy import random

x = random.normal(size=(~, 3))

print(x)

[[ 0.04544007 1.96473935 -0.15858358]
[-0.20709777 -1.40407508 -1.08589647]1]
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Random

import numpy as np

my_sample = np.random.normal(mu, sigma, size)

from numpy import random

x = random.normal(size=(2, 3))

print(x)

[[ 0.04544007 1.96473935 -0.15858358]
[-0.20709777 -1.40407508 -1.08589647]1]

from numpy import random
x = random.uniform(size=(2, 3))

print(x)

[[0.90171773 0.95619308 0.22216792]
[0.91454814 ©.78921139 0.54851748]]
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Table of Contents

Numpy Exercises
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Exercise

= create an array with the elements [2,6,3,4,7]
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Exercise

= create an array with the elements [2,6,3,4,7]

a = np.array([2,6,3,4,71)
a
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Exercise - arange()

= create an array that contains even values from 1 to 15, i.e. 1,3,5...15

a = np.arange(1,16,2)
a
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Exercise

= create an array with the elements [1,3,5,7,9]
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Exercise

= create an array with the elements [1,3,5,7,9]

a = np.array([1,3,5,7,91)
a

d = np.arange(1,10,2)
d

e = np.linspace(l, 9, 5)
e
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Exercise

= create an array with elements [0 1 2 3 4 56 7 8 9]
= given the notation from:to

= print all the elements of the array
= print the first three elements
= print the second to fourth element
= print the last three elements
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Exercise

= create an array with elements [0 1 2 3 4 56 7 8 9]
= given the notation from:to

= print all the elements of the array

= print the first three elements

= print the second to fourth element

= print the last three elements

X = np.arange(0)

print(x)
print(x[:31)
print(x[1:41)
print(x[-2:1)

[61234567809]
[0 1 2]
[123]
[7 8 9]
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Exercise

= given the notation from:to:step
= print every third element starting from the second
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Exercise

= given the notation from:to:step

= print every third element starting from the second

a = np.arange(0, 10)
print(a)

b = a[1:10:3]
print(b)

[6123456789]
[147]
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Exercise

= given the notation from:to:step
= if we omit from and to it assumes from=0 and to=length

= get every second element
= get every third element
= reverse the order

Marko Tkal¢i¢, DP-202122-07 38/47



Exercise

= given the notation from:to:step
= if we omit from and to it assumes from=0 and to=length
= get every second element

= get every third element
= reverse the order

print(x[::
print(x[:
print(x[::

[02468]
[0 36 9]
[98765432180]
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Exercise - reshape

= create a 5x5 matrix with values from 0 to 24
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Exercise - reshape

= create a 5x5 matrix with values from 0 to 24

x = np.arange(25).reshape(5, 5)
print(x)

[Ce 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]1]
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Exercise

= given the array from above, get the first two columns and the first two rows
= hint: slice per every dimension
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Exercise

= given the array from above, get the first two columns and the first two rows
= hint: slice per every dimension

print(x[:2, :21)

[fe 11
[5 611
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Exercise

= Get every third column of every second row
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Exercise

= Get every third column of every second row

y = x[::2, ::3]
print(y)

[[eo 3]
[10 13]
[20 231]
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Exercise

= np.random.randint(low,high)

= np.random.normal(mean, std, num)

= .shape

= create a 2D array with random dimensions from 1 to 5

= fill it with random variables drawn from a random distribution with mean=10
standard deviation=3

= use shape to print out the number of columns
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Exercise

= np.random.randint(low,high)
= np.random.normal(mean, std, num)

= . shape

create a 2D array with random dimensions from 1 to 5

fill it with random variables drawn from a random distribution with mean=10
standard deviation=3

= use shape to print out the number of columns

x

= np.random.randint(1,5)

y = np.random.randint(1,5)

a = np.random.normal(10,3,x*y)
b = a.reshape(x,y)

print(b)

s = b.shape

print(s[1])

[[10.33272803 13.22042969]
[10.93450619 10.3011933 ]
[ 6.33357001 10.69188525]]
2
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Exercise - indeces

= create an array with 6 random integers from 0 to 10
= using an index array, print the first, second to last, and last element
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Exercise - indeces

= create an array with 6 random integers from 0 to 10

= using an index array, print the first, second to last, and last element

X = np.random.randint(®, 10, 6)
print(x)

indices = [0, -2, -1]
print(x[indices])

[174925]
[12 5]
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Exercise

= create an array with elements from 0 to 4
= create a boolean array of indexes where the value of the first array is bigger than 2
= use the index array to create a new array that contains only elements >2
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Exercise

= create an array with elements from 0 to 4

create a boolean array of indexes where the value of the first array is bigger than 2
use the index array to create a new array that contains only elements >2

X = np.arange(-)
print(x)
i=x>2
print(i)
print(x[il)

[01234]
[False False False True Truel
[3 4]

Marko Tkal¢i¢, DP-202122-07
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Exercise

= Create an array from O to 26 assign it to a variable x
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Exercise

= Create an array from O to 26 assign it to a variable x

X = np.arange(9,27)
X

= Reverse the order of the array and print it out

Marko Tkal¢i¢, DP-202122-07

45/47



Exercise

= Create an array from O to 26 assign it to a variable x

X = np.arange(9,27)
X

= Reverse the order of the array and print it out

y = x[::-1]
print(y)

= Convert the 1-dimensional array you created into a 3 dimensional array
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Exercise

= Create an array from O to 26 assign it to a variable x

x = np.arange(9,27
X

= Reverse the order of the array and print it out

y = x[::-1]
print(y)

= Convert the 1-dimensional array you created into a 3 dimensional array

z = y.reshape((3,3,3))
print(z)

[LC[26 25 24]
[23 22 21]
[20 19 1811

[[17 16 15]
[14 13 12]
[11 10 911

-
Rl

61
3]
0111

NG
- a N
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Standardization

= Create a vector of 10 elements with normal distribution
= px =50
" ox=5

= Perform standardization on the array:

i

xi . X — MUx
td —

Si Ox
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Standardization

Create a vector of 10 elements with normal distribution
= px =50
" ox=5

= Perform standardization on the array:

i

xi . X — MUx
td —

s Ox

L]

Perform min-max normalization

i .
i _ X = Xmin
Xnorm =

Xmax — Xmin
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Part of the material has been taken from the following sources. The usage of the
referenced copyrighted work is in line with fair use since it is for nonprofit educational
purposes.

= https://www.w3schools.com/python/numpy__intro.asp

= https://www.tutorialspoint.com/numpy/numpy_introduction.htm

= https://cs231n.github.io/python-numpy-tutorial /#scipy

= https://www.scipy.org/scipylib/faq.html#numpy-vs-scipy-vs-other-packages
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