

Navigational mechanisms of large marine vertebrates

Migrations

- · Yearly or seasonal movements,
- Convergent evolution (similar solutions)
- · Sense of time (when, how long),
- Sense of time (when, now long),
 Physiological adaptations (saving energy),
 Behavioural patterns (response to changes in environment),
- Ability to sense, use navigational cues.

Types of navigational cues

- Magnetic field (strength & incline),
- · Celestial bodies (sun, moon & stars),
- · Chemical/olfactory cues,
- · Sounds,
- · Salinity,
- · Depth,
- · Temperature...

Types of navigation

- · Primary/secondary navigation
- · Active/passive navigation
- · Real/vector navigation
- Navigational cues differ between, different groups (availability, physiological adaptations)

Magnetic Field

- · Electric currents (liquid outer core)
- Magnetic field lines (inclination)
- · Intesity/strength
- Max and min. (+ oscillations)
- · Induction hypothesis (Lorenzini ampullae)
- · Iron-mineral hypothesis (magnetite)
- Radical pair hypothesis (cryptochrome)

Induction hypothesis

- Electric tension across the electrical conductor in a changing magnetic field/moving of conductor through stationary magnetic field.
- If conductor in shape of circle/coil -> sense of direction

Radical pair hypothesis

- · Cryptochromes (photosensitive),
- Donor and acceptor -> radical pair (ms),
- Singlet and triplet state (not in equilibrium)

Chemical cues

- Biotic/abiotic
- · Seasonal (guidelines, time stamps)
- · Dimethyl sulfide (DMS)
- · Phytoplankton grazing
- Olfactory system

Sharks

- Reproducing & feeding
 During migration -> most of the time on the surface + oscilatory dives (navigation?)
- Electroreceptors + vestibular system
- Magnetite (head area)

Sea turtles

- Reproducing, feeding & ontogenetic development
- · Similar as sharks + resting places
- · Different cues in different life stages

- Magnetite (head area)
- · Chemical cues
- Moon & Sun
- Infrasound

Marine mammals

- · Reproduction, feeding
- In migration corridor (2x more time on surface)
- Magnetite (brain membrane, spine)

- · Olfactory cues (exception are Odontoceti)
- · Above water
- $\boldsymbol{\cdot}$ memory, topography, visual cues (spy hopping), infrasound (echolocation)

	class I	OR class I class II		VIR	V2R	TASIR	TAS2R
COW	142	828	16	40 b	0,	3	21
minke whale	- 4	56	0	2	0	0	1
dolphin	2	10	0	1	0	0°	0 °
May Phylide is used	2015						

Marine birds

- · Adaptations (salt gland)
- · Reproduction & feeding
- · Most of research on pigeons
- Behaviour similar to sea turtles (resting places)

- Cryptochromes
- Magnetite
- Ophtalmic nerve
- Chemical cues (only in air)
- Celestial bodies, light polarization topography, landscape figures, infrasound, memory

So which one do they choose? - All off the presented groups can sense most of the cues, - They use the one that is the most useful in the present moment, - According to this we can assume that migration is consisted of different phases, based on the type of navigation. 3 phases of migrations: - 1. long distance, - 2. narrowing-in (homing), - 3. pinpointing the goal.