
12 - Text Feature Extraction
Data Science Practicum 2021/22, Lesson 12

Marko Tkalčič

Univerza na Primorskem

Marko Tkalčič, DP-202122-12 1/21

Table of Contents

Text Feature Extraction

Vector Similarities

Embeddings

References

Marko Tkalčič, DP-202122-12 2/21

Features in Machine Learning

Document Label

It was the best of times C
it was the worst of times S
it was the age of wisdom C
it was the age of foolishness ?

Document f1 f2 f3 Label

It was the best of times 1 2 1 C
it was the worst of times 3 3 3 S
it was the age of wisdom 4 1 2 C
it was the age of foolishness 2 2 1 ?

Marko Tkalčič, DP-202122-12 3/21

Features in Machine Learning

Document Label

It was the best of times C
it was the worst of times S
it was the age of wisdom C
it was the age of foolishness ?

Document f1 f2 f3 Label

It was the best of times 1 2 1 C
it was the worst of times 3 3 3 S
it was the age of wisdom 4 1 2 C
it was the age of foolishness 2 2 1 ?

Marko Tkalčič, DP-202122-12 3/21

Bag-of-Words

• Method for extracting features from text

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

• Step 1: vocabulary (unique words):
• it, was, the, best, of, times, worst, age, wisdom, foolishness

• Step 2: document vectors

Document it was the best of times worst age wisdom foolishness Label

It was the best of times 1 1 1 1 1 1 0 0 0 0 C
it was the worst of times 1 1 1 0 1 1 1 0 0 0 S
it was the age of wisdom 1 1 1 0 1 0 0 1 1 0 C
it was the age of foolishness 1 1 1 0 1 0 0 1 0 1 S

Marko Tkalčič, DP-202122-12 4/21

Bag-of-Words

• Method for extracting features from text

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

• Step 1: vocabulary (unique words):
• it, was, the, best, of, times, worst, age, wisdom, foolishness

• Step 2: document vectors

Document it was the best of times worst age wisdom foolishness Label

It was the best of times 1 1 1 1 1 1 0 0 0 0 C
it was the worst of times 1 1 1 0 1 1 1 0 0 0 S
it was the age of wisdom 1 1 1 0 1 0 0 1 1 0 C
it was the age of foolishness 1 1 1 0 1 0 0 1 0 1 S

Marko Tkalčič, DP-202122-12 4/21

Bag of Words

"it was the worst of times" -> [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

"it was the age of wisdom" -> [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

"it was the age of foolishness" -> [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

• Instead of single words we can use N-grams (bi-grams, tri-grams etc.)
• it was
• was the
• the best
• best of
• of times

• step 3: scoring words
• instead of a binary vector we can give each N-gram a score

• Counts: Count the number of times each word appears in a document.
• Frequencies: Calculate the frequency that each word appears in a document out of all the words

in the document.

Marko Tkalčič, DP-202122-12 5/21

Bag of Words

"it was the worst of times" -> [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

"it was the age of wisdom" -> [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

"it was the age of foolishness" -> [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

• Instead of single words we can use N-grams (bi-grams, tri-grams etc.)
• it was
• was the
• the best
• best of
• of times

• step 3: scoring words
• instead of a binary vector we can give each N-gram a score

• Counts: Count the number of times each word appears in a document.
• Frequencies: Calculate the frequency that each word appears in a document out of all the words

in the document.

Marko Tkalčič, DP-202122-12 5/21

Bag of Words

"it was the worst of times" -> [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

"it was the age of wisdom" -> [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

"it was the age of foolishness" -> [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

• Instead of single words we can use N-grams (bi-grams, tri-grams etc.)
• it was
• was the
• the best
• best of
• of times

• step 3: scoring words
• instead of a binary vector we can give each N-gram a score

• Counts: Count the number of times each word appears in a document.
• Frequencies: Calculate the frequency that each word appears in a document out of all the words

in the document.

Marko Tkalčič, DP-202122-12 5/21

TF-IDF

• Highly frequent words tend to dominate but might not have information value
• Rarer words, domain speciofic words may contain more info for the classifier

• Solution?

• TF-Term Frequency: is a scoring of the frequency of the word in the current
document.

• ft,d is the raw count of term t in document d

tf (t, d) = ft,d

• IDF-Inverse Document Frequency: is a scoring of how rare the word is across
documents.

• N = number of documents in the corpus N = |D|
• the logarithmically scaled inverse fraction of the documents d in corpus D that contain

the word t
• denominator = number of documents where the term t appears

idf (t, D) = log
N

|{d ∈ D : t ∈ d}|

tfidf (t, d , D) = tf (t, d) · idf (t, D)

Marko Tkalčič, DP-202122-12 6/21

TF-IDF

• Highly frequent words tend to dominate but might not have information value
• Rarer words, domain speciofic words may contain more info for the classifier

• Solution?

• TF-Term Frequency: is a scoring of the frequency of the word in the current
document.

• ft,d is the raw count of term t in document d

tf (t, d) = ft,d

• IDF-Inverse Document Frequency: is a scoring of how rare the word is across
documents.

• N = number of documents in the corpus N = |D|
• the logarithmically scaled inverse fraction of the documents d in corpus D that contain

the word t
• denominator = number of documents where the term t appears

idf (t, D) = log
N

|{d ∈ D : t ∈ d}|

tfidf (t, d , D) = tf (t, d) · idf (t, D)

Marko Tkalčič, DP-202122-12 6/21

TF-IDF

• Highly frequent words tend to dominate but might not have information value
• Rarer words, domain speciofic words may contain more info for the classifier

• Solution?

• TF-Term Frequency: is a scoring of the frequency of the word in the current
document.

• ft,d is the raw count of term t in document d

tf (t, d) = ft,d

• IDF-Inverse Document Frequency: is a scoring of how rare the word is across
documents.

• N = number of documents in the corpus N = |D|
• the logarithmically scaled inverse fraction of the documents d in corpus D that contain

the word t
• denominator = number of documents where the term t appears

idf (t, D) = log
N

|{d ∈ D : t ∈ d}|

tfidf (t, d , D) = tf (t, d) · idf (t, D)

Marko Tkalčič, DP-202122-12 6/21

TFIDF with sklearn

import pandas as pd

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

this is a very toy example, do not try this at home unless you want to understand the usage differences

docs=["the house had a tiny little mouse",

"the cat saw the mouse",

"the mouse ran away from the house",

"the cat finally ate the mouse",

"the end of the mouse story"

]

• First, create a CountVectorizer to count the number of words (term frequency),
limit your vocabulary size, apply stop words

• shape should be 5 rows (5 docs) per 16 columns (16 unique words)

#instantiate CountVectorizer()

cv=CountVectorizer()

this steps generates word counts for the words in your docs

word_count_vector=cv.fit_transform(docs)

word_count_vector.shape

(5, 16)

• You can specify a custom stop word list, enforce minimum word count, etc.

Marko Tkalčič, DP-202122-12 7/21

TFIDF with sklearn

import pandas as pd

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

this is a very toy example, do not try this at home unless you want to understand the usage differences

docs=["the house had a tiny little mouse",

"the cat saw the mouse",

"the mouse ran away from the house",

"the cat finally ate the mouse",

"the end of the mouse story"

]

• First, create a CountVectorizer to count the number of words (term frequency),
limit your vocabulary size, apply stop words

• shape should be 5 rows (5 docs) per 16 columns (16 unique words)

#instantiate CountVectorizer()

cv=CountVectorizer()

this steps generates word counts for the words in your docs

word_count_vector=cv.fit_transform(docs)

word_count_vector.shape

(5, 16)

• You can specify a custom stop word list, enforce minimum word count, etc.

Marko Tkalčič, DP-202122-12 7/21

TFIDF with sklearn

• Now we are going to compute the IDF values by calling
tfidf_transformer.fit(word_count_vector) on the word counts we computed earlier.

tfidf_transformer=TfidfTransformer(smooth_idf=True,use_idf=True)

tfidf_transformer.fit(word_count_vector)

• let’s visualize it

print idf values

df_idf = pd.DataFrame(tfidf_transformer.idf_, index=cv.get_feature_names(),

columns=["idf_weights"])

sort ascending

df_idf.sort_values(by=['idf_weights'])

idf_weights

mouse 1.000000
the 1.000000
cat 1.693147
house 1.693147
ate 2.098612
away 2.098612
end 2.098612
finally 2.098612
from 2.098612
had 2.098612
little 2.098612
of 2.098612
ran 2.098612
saw 2.098612
story 2.098612
tiny 2.098612

Marko Tkalčič, DP-202122-12 8/21

TFIDF with sklearn

• Now we are going to compute the IDF values by calling
tfidf_transformer.fit(word_count_vector) on the word counts we computed earlier.

tfidf_transformer=TfidfTransformer(smooth_idf=True,use_idf=True)

tfidf_transformer.fit(word_count_vector)

• let’s visualize it

print idf values

df_idf = pd.DataFrame(tfidf_transformer.idf_, index=cv.get_feature_names(),

columns=["idf_weights"])

sort ascending

df_idf.sort_values(by=['idf_weights'])

idf_weights

mouse 1.000000
the 1.000000
cat 1.693147
house 1.693147
ate 2.098612
away 2.098612
end 2.098612
finally 2.098612
from 2.098612
had 2.098612
little 2.098612
of 2.098612
ran 2.098612
saw 2.098612
story 2.098612
tiny 2.098612

Marko Tkalčič, DP-202122-12 8/21

TFIDF

• Once you have the IDF values, you can now compute the tf-idf scores for any
document or set of documents.

count matrix

count_vector=cv.transform(docs)

• We could have actually used word_count_vector from above.
• However, in practice, you may be computing tf-idf scores on a set of new unseen

documents.
• When you do that, you will first have to do cv.transform(your_new_docs) to

generate the matrix of word counts.

• finally compute the tf-idf values

tf-idf scores

tf_idf_vector=tfidf_transformer.transform(count_vector)

Marko Tkalčič, DP-202122-12 9/21

TFIDF

• Once you have the IDF values, you can now compute the tf-idf scores for any
document or set of documents.

count matrix

count_vector=cv.transform(docs)

• We could have actually used word_count_vector from above.
• However, in practice, you may be computing tf-idf scores on a set of new unseen

documents.
• When you do that, you will first have to do cv.transform(your_new_docs) to

generate the matrix of word counts.

• finally compute the tf-idf values

tf-idf scores

tf_idf_vector=tfidf_transformer.transform(count_vector)

Marko Tkalčič, DP-202122-12 9/21

TFIDF

• let’s visualize
feature_names = cv.get_feature_names()

#get tfidf vector for first document

first_document_vector=tf_idf_vector[0]

#print the scores

df = pd.DataFrame(first_document_vector.T.todense(), index=feature_names, columns=["tfidf"])

df.sort_values(by=["tfidf"],ascending=False)

tfidf

had 0.493562
little 0.493562
tiny 0.493562
house 0.398203
mouse 0.235185
the 0.235185
ate 0.000000
away 0.000000
cat 0.000000
end 0.000000
finally 0.000000
from 0.000000
of 0.000000
ran 0.000000
saw 0.000000
story 0.000000

Marko Tkalčič, DP-202122-12 10/21

Exercise

• File mrtambourineman.txt = multiline text, utf8
• Treat each line as a document
• Generate a dataframe that contains the following columns

• content_text: value of the line
• word: TFIDF of the word

• Hints:
• feature_names = cv.get_feature_names()

• tfidf_dense = tf_idf_vector[i].T.todense().tolist()

imports

import pandas as pd

import numpy as np

import pandas as pd

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

load file and split lines into list

with open("mrtambourineman.txt", encoding="utf8") as file:

data = file.read()

docs = data.split("\n")

Marko Tkalčič, DP-202122-12 11/21

Exercise

• File mrtambourineman.txt = multiline text, utf8
• Treat each line as a document
• Generate a dataframe that contains the following columns

• content_text: value of the line
• word: TFIDF of the word

• Hints:
• feature_names = cv.get_feature_names()

• tfidf_dense = tf_idf_vector[i].T.todense().tolist()

imports

import pandas as pd

import numpy as np

import pandas as pd

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

load file and split lines into list

with open("mrtambourineman.txt", encoding="utf8") as file:

data = file.read()

docs = data.split("\n")

Marko Tkalčič, DP-202122-12 11/21

Exercise

compute TFIDF

#instantiate CountVectorizer()

cv=CountVectorizer()

this steps generates word counts for the words in your docs

word_count_vector=cv.fit_transform(docs)

tfidf_transformer=TfidfTransformer(smooth_idf=True,use_idf=True)

tfidf_transformer.fit(word_count_vector)

count matrix

count_vector=cv.transform(docs)

tf-idf scores

tf_idf_vector=tfidf_transformer.transform(count_vector)

Marko Tkalčič, DP-202122-12 12/21

Exercise

create column names

feature_names = cv.get_feature_names()

cols = ["content_text"]

cols.extend(feature_names)

create dataframe

df_out = pd.DataFrame(columns=cols)

iterate through the lines

i = 0

for s in docs:

row = [s]

tfidf_dense = tf_idf_vector[i].T.todense().tolist()

for ti in tfidf_dense:

row.append(ti[0])

df_out.loc[len(df_out)] = row

i += 1

df_out

Marko Tkalčič, DP-202122-12 13/21

Table of Contents

Text Feature Extraction

Vector Similarities

Embeddings

References

Marko Tkalčič, DP-202122-12 14/21

Cosine Similarity

Marko Tkalčič, DP-202122-12 15/21

Cosine Similarity

from scipy import spatial

v1 = [0,0,1]

v2 = [3,2,1]

s = spatial.distance.cosine(v1,v2)

print(s)

0.7327387580875756

• Other similarities:
• Pearson’s correlation
• Spearman’s correlation
• Kendall’s Tau
• Cosine similarity
• Jaccard similarity
• Manhattan
• Euclidian

Marko Tkalčič, DP-202122-12 16/21

Exercise

• for the dataframe from the previous exercise, calculate pairwise cosine similarities
between the lines

Marko Tkalčič, DP-202122-12 17/21

Table of Contents

Text Feature Extraction

Vector Similarities

Embeddings

References

Marko Tkalčič, DP-202122-12 18/21

Word Embeddings

• Are a by-product of deep neural networks
• When a DNN is trained on a large corpus of data

• text units (words) get their unique vectors in low dimensions (several hundreds)
• each document is represented by an aggregation (sum) of the words’ vectors

• Word2vec, fasttext, Bert
• Gensim package in Python

https://colab.research.google.com/drive/1zuq1I_FudtB2W4OSOWff8ODqfqK8d9-G#

scrollTo=edQSGcAIh7oh

Marko Tkalčič, DP-202122-12 19/21

https://colab.research.google.com/drive/1zuq1I_FudtB2W4OSOWff8ODqfqK8d9-G#scrollTo=edQSGcAIh7oh
https://colab.research.google.com/drive/1zuq1I_FudtB2W4OSOWff8ODqfqK8d9-G#scrollTo=edQSGcAIh7oh

Word Embeddings

• Are a by-product of deep neural networks
• When a DNN is trained on a large corpus of data

• text units (words) get their unique vectors in low dimensions (several hundreds)
• each document is represented by an aggregation (sum) of the words’ vectors

• Word2vec, fasttext, Bert
• Gensim package in Python

https://colab.research.google.com/drive/1zuq1I_FudtB2W4OSOWff8ODqfqK8d9-G#

scrollTo=edQSGcAIh7oh

Marko Tkalčič, DP-202122-12 19/21

https://colab.research.google.com/drive/1zuq1I_FudtB2W4OSOWff8ODqfqK8d9-G#scrollTo=edQSGcAIh7oh
https://colab.research.google.com/drive/1zuq1I_FudtB2W4OSOWff8ODqfqK8d9-G#scrollTo=edQSGcAIh7oh

Table of Contents

Text Feature Extraction

Vector Similarities

Embeddings

References

Marko Tkalčič, DP-202122-12 20/21

References

Part of the material has been taken from the following sources. The usage of the
referenced copyrighted work is in line with fair use since it is for nonprofit educational
purposes.

• https://machinelearningmastery.com/gentle-introduction-bag-words-model/
• https://en.wikipedia.org/wiki/Tf%E2%80%93idf
• https://kavita-ganesan.com/tfidftransformer-tfidfvectorizer-usage-differences/
• https://www.ibm.com/blogs/research/2018/11/word-movers-embedding/

Marko Tkalčič, DP-202122-12 21/21

	Text Feature Extraction
	Vector Similarities
	Embeddings
	References

