W,

< .
P : famit
7 E

=

v
UNver?

18 - Advanced Splitting
Data Science Practicum 2021/22, Lesson 18

Marko Tkal¢i¢

Univerza na Primorskem

Marko Tkal¢i¢, DP-202122-18 1/26

Table of Contents

Advanced Splitting

Marko Tkal¢i¢, DP-202122-18 2/26

Train-test-validation splitting

= Predictor/regressors are trained

= using the train set
= the weights/parameters are the outcome of the training process

= Most of the classifier/regressors have hyperparameters
= Parameters whose values are used to control the learning process
= Are set before the training
= The prediction quality depends on these parameters
= Examples:
= max depth of a random forest (model hyperparameter)

= learning rate (algorithm hyperparameter)
= topology and size of a neural network

Marko Tkal¢i¢, DP-202122-18 3/26

Train-test-validation splitting

= Predictor/regressors are trained

= using the train set

= the weights/parameters are the outcome of the training process
= Most of the classifier/regressors have hyperparameters

= Parameters whose values are used to control the learning process
= Are set before the training
= The prediction quality depends on these parameters

= Examples:
= max depth of a random forest (model hyperparameter)
= learning rate (algorithm hyperparameter)
= topology and size of a neural network

= We need to find the optimal hyperparameters
= How?

Marko Tkal¢i¢, DP-202122-18 3/26

Train-test-validation splitting

= Predictor/regressors are trained

= using the train set

= the weights/parameters are the outcome of the training process
= Most of the classifier/regressors have hyperparameters

= Parameters whose values are used to control the learning process

= Are set before the training

= The prediction quality depends on these parameters

= Examples:

= max depth of a random forest (model hyperparameter)

= learning rate (algorithm hyperparameter)
= topology and size of a neural network

= We need to find the optimal hyperparameters
= How?

= We introduce an additional data subset only for validating the hyperparameters:

the validation set

Marko Tkal¢i¢, DP-202122-18 3/26

Validation set

A Test

|
Single Dataset

B Validation

|
Single Dataset

X_train, X_test, y_train, y_test train, validate, test = \
= train_test_split(X, y, test_size=0.2, random_state=|) np.split(df.sample(frac=1, random_state=42)
[int(.6*len(df)), int(.8+*len(df))]

X_train, X_val, y_train, y_val
= train_test_split(X_train, y_train, test_size=0 25, Fandom_state=1)

Marko Tkal¢i¢, DP-202122-18 4/26

Table of Contents

Hyperparameters

Marko Tkal¢i¢, DP-202122-18 5/26

Hyperparameters

= The hyperparameter search often boils down to:
= How Complex should my model be?
= polynomial degree
= network depth
= forest depth

Marko Tkal¢i¢, DP-202122-18 6/26

Hyperparameters

= The hyperparameter search often boils down to:
= How Complex should my model be?
= polynomial degree
= network depth
= forest depth

Bias/variance

S £| £ £
X
Size Size Size
Oy + O fo + Oz + Bya? o + O + Oa? + Oya® + 2"
High bias “Just right” High variance
(underfit) L= (overfit)
3! A Y

Andrew Ng

Marko Tkal¢i¢, DP-202122-18 6/26

Bias-variance

< Underfitting | Overfitting 2

Hcsré Fit 1 & _. Il'-.'l"_:;'”"f

Error
/
II
1_
II
IIII|

' Traim .
~ILaining Erro

Model "complexity”

Marko Tkal¢i¢, DP-202122-18 7/26

Exercise

= Make classification dataset 1000 samples, 10 fetures

= Split into train, test, and validation 80:10:10

= RandomForestClassifier

= Find the best value for the max_depth hyperparameter (iterate over it and plot the
recall_score)

Marko Tkal¢i¢, DP-202122-18 8/26

Exercise

= Make classification dataset 1000 samples, 10 fetures

= Split into train, test, and validation 80:10:10

= RandomForestClassifier

= Find the best value for the max_depth hyperparameter (iterate over it and plot the
recall_score)

from sklearn.metrics import precision_score, recall_score
from sklearn.datasets import make_classification

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt

X, y = make_classification(n_samples=1000, n_features=10, random_state=7)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1)
mse_valid = []
mse_train = []
tss = range(1,20)
for n in tss:
model = RandomForestClassifier(max_depth=n, random_state=2)
model. fit(X_train,y_train)
mse_valid.append(recall_score(model.predict(X_val),y_val))
mse_train.append(recall_score(model.predict(X_train),y_train))
plt.plot(tss,mse_valid,”-sg”, label="validation")
plt.plot(tss,mse_train,”-db”, label="train")
plt.legend()
plt.show()

Marko Tkal¢i¢, DP-202122-18 8/26

Exercise

1000 | —m— walidation
—— train

(1998 1

(1996 -

(1994 1

0.992 1

(1990 1

(1988 1

1986 -

25 5.0 75 10.0 125 150 115

Marko Tkal¢i¢, DP-202122-18 9/26

Grid Search

= Exhaustive search over a set of hyperparameters

param_grid = [

{'c': [1, 10, 100, 1000], 'kernel': ['linear']},

{'c': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf'l},
]

Marko Tkal¢i¢, DP-202122-18 10/26

Grid Search

from sklearn import datasets

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC

digits = datasets.load_digits()

n_samples = len(digits.images)

X = digits.images.reshape((n_samples, -1))

y = digits.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.°, random_state=0)

tuned_parameters = [{'kernel': ['rbf'], 'gamma': [le-3, le-4],
‘c': [1, 1o, 100, 13,
{'kernel': ['linear'l, 'C': [1, 10, 100, 10001}1

scores = ['precision', 'recall']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
clf = GridSearchCV(
SVC(), tuned_parameters, scoring='%s_macro' % score
)
clf.fit(X_train, y_train)
print("Best parameters set found on development set:”)
print(clf.best_params_)

Best parameters set found on development set:
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

Best parameters set found on development set:
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

Marko Tkal¢i¢, DP-202122-18 11/26

Exercise

= Make a classification dataset with 100 samples and 5 features
= RandomForestClassifier

= Use GridSearchCV to find the best hyperparameters in the set:
= n_estimators = [50, 100, 200]

= max_depth = [10, 20, 30]

Marko Tkal¢i¢, DP-202122-18 12/26

Exercise

= Make a classification dataset with 100 samples and 5 features
= RandomForestClassifier

= Use GridSearchCV to find the best hyperparameters in the set:
= n_estimators = [50, 100, 200]

= max_depth = [10, 20, 30]

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
import sklearn

X, y = make_classification(n_samples=100, n_features=5, random_state=7)

n_estimators = [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 20001
m_depth = [10, , 30, 40, 50, 60, 70, 80, 90, 100, Nonel
n_estimators = [50, 100, 200, 400]
m_depth = [10, 20, 30]
params = [{"n_estimators”: n_estimators, "max_depth” : m_depth}]
clf = GridSearchCV(
RandomForestClassifier(), params, scoring="precision”

)
clf.fit(X,y)
print(clf.best_params_)

{'max_depth': 10, 'n_estimators': 100}

Marko Tkal¢i¢, DP-202122-18 12/26

Validation and Learning Curves

https://scikit-learn.org/stable/modules/learning_curve.html

Marko Tkal¢i¢, DP-202122-18 13/26

Table of Contents

Cross validation

Marko Tkal¢i¢, DP-202122-18 14/26

Cross validation

‘ All Data |

‘ Training data | Test data |

| Fold1 || Fold2 || Fold3 || Fold4 || Folds |

spit1 | Fold1 || Fold2 || Fold3 || Fold4 || Folds |

spiit2 | Fold1 || Fold2 || Fold3 || Fold4 || Folds |

spiit3 | Fold1 || Fold2 || Fold3 || Folda || Folds |

split4 | Fold1 || Foid2 || Fold3 || Fold4 || Foids |

> Finding Parameters

spiit5 | Fold1 || Foid2 || Fold3 || Fold4 || Folds |/

Final evaluation { Test data

= Can be used for hyperparameter tuning or for testing only

Marko Tkal¢i¢, DP-202122-18 15/26

Cross validation in Pyth

= cross_val_score
= cross_validate (allows multiple metrics, returns more info)
= cross_val_predict (returns also the predicted values in the test sets)

Marko Tkal¢i¢, DP-202122-18 16/26

Cross validation in Python

= cross_val_score
= cross_validate (allows multiple metrics, returns more info)
= cross_val_predict (returns also the predicted values in the test sets)

from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

X, y = make_classification(n_samples=1000, n_features=10, random_state=7)
clf = sVC(kernel='linear', C=1)

scores = cross_val_score(clf, X, y, cv=5)

scores

array([0.92 , 0.92 , 0.935, 0.94 , 0.945])

Marko Tkal¢i¢, DP-202122-18

16/26

Cross validation lterators

= Cross validation iterators in sklearn
= utilities to generate indices that can be used to generate dataset splits according to
different cross validation strategies.
= K-fold
= Repeated K-fold
= Leave One Out
= Stratified k-fold

Marko Tkal¢i¢, DP-202122-18 17/26

K Fold

= divides all the samples in k groups of samples, called folds (if k = n, this is
equivalent to the Leave One Out strategy), of equal sizes (if possible). The
prediction function is learned using k — 1 folds, and the fold left out is used for test.

import numpy as np
from sklearn.model_selection import KFold

X = np.array([”a", "b", "c", "d", "e", "f", "g", "h"1)
kf = KFold(n_splits=4)
for train, test in kf.split(X):

X[train]

print("%s %s" % (train, test))

[234567][01]
[014567]I[23]
[012367]1[45]
[0612345][67]

Marko Tkal¢i¢, DP-202122-18

CV iteration

KFold
Testing set
o = Training set
1
2
3
dass
group | L -
0 20 40 60 80 100

sample index

18/26

Shuffle and Split

ShuffleSplit
import numpy as np Testing set
from sklearn.model_selection import ShuffleSplit 0 mm Training set
- 1
X = np.array(["a", "b", "c", "d", "e", "f", "g", "h"1) % 2
kf = ShuffleSplit(n_splits=1) g
for train, test in kf.split(X): 3 dass
X[train]
print("%s %s" % (train, test)) group | — — -
o 20 40 60 80 100
Sample index
[2563074][1]
[6534217]([el
[1340652]I[7]
[2134657]([e]

Marko Tkal¢i¢, DP-202122-18 19/26

Stratified k-fold

= class imbalance

= relative class frequencies is approximately preserved in each train and validation fold

Stratified k fold

from sklearn.model_selection import StratifiedKFold, KFol
import numpy as np

X, y = np.ones((50, 1)), np.hstack(([0] * 45, [1] * 5))

skf = StratifiedKFold(n_splits=3)
for train, test in skf.split(X, y):
print('Stratified: train - {} | test - {}'.form
np.bincount(y[train]), np.bincount(y[test])))

kf = KFold(n_splits=3)
for train, test in kf.split(X, y):
print('KFold: train - {} | test - {}'.format(
np.bincount(y[trainl), np.bincount(y[test1)))

d

ht(

Stratified: train - [30 3] | test - [15 2]
Stratified: train - [30 3] | test - [15 2]
Stratified: train - [30 41 | test - [15 1]
KFold: train - [28 5] | test - [17]
KFold: train - [28 5] | test - [17]
KFold: train - [34] | test - [11 5]

Marko Tkal¢i¢, DP-202122-18

CV iteration

StratifiedKFold
Testing set
o W Training set
1
2
3
dass
group | I - -
0 20 0 60 80 100

Sample index

20/26

Table of Contents

Nested Cross-validation

Marko Tkal¢i¢, DP-202122-18 21/26

Nested Cross Validation

Outer Loop Inner Loop
Test Dataset Training Dataset) Test Dataset Training Dataset

—> [N I A
L I
L I
[L
[R

Run after inner loop is done

Train model with best

hyperparameters found from the
training dataset and test the model Sestlhypemerametsis

with the held back test data

1 out of K scores

https://machinelearningmastery.com /nested-cross-validation-for-machine-
learning-with-python/
https://mlfromscratch.com/nested-cross-validation-python-code/# /

Marko Tkal¢i¢, DP-202122-18

Table of Contents

Assignment (optional)

Marko Tkal¢i¢, DP-202122-18 23/26

Assignment (optional)

= Load the Iris dataset

= Pick a classifier of your choice

= Pick three evaluation metrics of your choice. In the code comment provide a short
rationale.

= Pick at least two hyper-parameters of the classifier.

= For each hyper-parameter choose at least 5 values according to your subjective
assessment.

= Perform grid search using GridSearchCV for each of the three metrics

= Visualize the performance of each hyper-parameter pair using a 2D visualization
(e.g. a heatmap)

Marko Tkal¢i¢, DP-202122-18 24/26

Table of Contents

References

Marko Tkal¢i¢, DP-202122-18 25/26

References

Part of the material has been taken from the following sources. The usage of the
referenced copyrighted work is in line with fair use since it is for nonprofit educational
purposes.

= https://scikit-learn.org/stable/modules/model_evaluation.html

= https://en.wikipedia.org/wiki/Precision_and_recall

= https://en.wikipedia.org/wiki/Hyperparameter__(machine_learning)

= https://stackoverflow.com/questions /38250710 /how-to-split-data-into-3-sets-
train-validation-and-test

= https://datascience.stackexchange.com/questions/15135 /train-test-validation-set-
splitting-in-sklearn

= https://algotrading101.com/learn/train-test-split/

= https://scipy-lectures.org/packages/scikit-
learn/auto_examples/plot_bias_variance.html

= https://mlfromscratch.com/nested-cross-validation-python-code/#/

Marko Tkal¢i¢, DP-202122-18 26/26

	Advanced Splitting
	Hyperparameters
	Cross validation
	Nested Cross-validation
	Assignment (optional)
	References

