u,

< .
P : famnit
y i

=

unves?®

19 - Features Importance

Data Science Practicum 2021/22, Lesson 19

Marko Tkal¢i¢

Univerza na Primorskem

Marko Tkal¢i¢, DP-202122-19 1/12



Table of Contents

Features

Marko Tkal¢i¢, DP-202122-19 2/12



Feature Importance

= Not all features are equally important

= Feature Importance scores

= Better understanding of the data.
= Better understanding of the model.
= Reducing the number of input features.

Marko Tkal¢i¢, DP-202122-19 3/12



= Linear ML models are a weighted sum of fetures
= Weights -> importance
= Data should be normalized
= Linear regression, Logistic regression

Marko Tkal¢i¢, DP-202122-19 4/12



Coeficcients

= Linear ML models are a weighted sum of fetures
= Weights -> importance
= Data should be normalized
= Linear regression, Logistic regression

from sklearn.datasets import make_regression Feature: @, Score: -0.00000
from sklearn.linear_model import LinearRegression Feature: 1, Score: 12.44483
from matplotlib import pyplot Feature: 2, Score: 0.00000
Feature: 3, Score: -0.00000

X, y = make_regression(n_samples=1000, n_features=10, Feature: 4, Score: 93.32225
n_informative=5, random_state=1) Feature: 5, Score: 86.50811
Feature: 6, Score: 26.74607

model = LinearRegression() Feature: 7, Score: 3.28535
Feature: 8, Score: -0.00000

model.fit(X, y) Feature: 9, Score: 0.00000

importance = model.coef_

for i,v in enumerate(importance):
print('Feature: %0d, Score: %.5f' % (i,v))

pyplot.bar([x for x in range(len(importance))], importancg)
pyplot. show()

= the model found the five important features and marked all other features with a
zero coefficient, essentially removing them from the model.

Marko Tkal¢i¢, DP-202122-19 4/12



Exercise

= Load the iris dataset

= Plot the histogram of the four features

= Use Logistic regression and print the features’ importance importance =
model.coef_[0]

= Z-Normalize the features (mean=0, std=1)

= Plot the histogram of the four features

= Use Logistic regression and print the features' importance

Marko Tkal¢i¢, DP-202122-19 5/12



Exercise

= Load the iris dataset

= Plot the histogram of the four features

= Use Logistic regression and print the features’ importance importance =
model.coef_[0]

= Z-Normalize the features (mean=0, std=1)

= Plot the histogram of the four features

= Use Logistic regression and print the features’ importance

iris = datasets.load_iris()

X = iris.data X = preprocessing.scale(X)
y = iris.target pyplot.hist(X[:,0]1)
pyplot.hist(X[:,0]1) pyplot.hist(X[:,1])
pyplot.hist(X[:,1]1) pyplot.hist(X[:,2])
pyplot.hist(X[:,21) pyplot.hist(X[:,3]1)
pyplot.hist(X[:,3]) pyplot.show()

pyplot.show()

model = LogisticRegression()

model = LogisticRegression() model.fit(X, y)

model.fit(X, y) importance = model.coef_[0]

importance = model.coef_[0] for i,v in enumerate(importance):

for i,v in enumerate(importance): print('Feature: %@d, Score: %.5f' % (i,v))

print('Feature: %0d, Score: %.5f' % (i,v))

Feature: @, Score: -1.07404
Feature: @, Score: -0.41813 Feature: 1, Score: 1.16006
Feature: 1, Score: 0.96633 Feature: 2, Score: -1.93063
Feature: 3, Score: -1.81169

Markb Tkl BP-202153"
ar ?gé&'ure:’%, ]Sco}

5/12




Decision Tree Feature Importance

= Decision Tree-based models offer importance score

= Decision Tree
= Random Forest

Marko Tkal¢i¢, DP-202122-19 6/12



Decision Tree Feature Importance

= Decision Tree-based models offer importance score

= Decision Tree
= Random Forest

from sklearn.datasets import make_regression Feature: @, Score: 0.00280
from sklearn.tree import DecisionTreeRegressor Feature: 1, Score: 0.00424
from matplotlib import pyplot Feature: 2, Score: 0.00179
Feature: 3, Score: 0.00243
X, y = make_regression(n_samples=1000, n_features=10, Feature: 4, Score: 0.51731
n_informative=5, random_state=1) Feature: 5, Score: 0.43768
Feature: 6, Score: 0.02690
model = DecisionTreeRegressor() Feature: 7, Score: 0.00306
Feature: 8, Score: 0.00274
model.fit(X, y) Feature: 9, Score: 0.00104
importance = model.feature_importances_
for i,v in enumerate(importance):
print('Feature: %0d, Score: %.5f' % (i,v))

Marko Tkal¢i¢, DP-202122-19 6/12



Exercise

= |ris dataset
= DecisionTreeClassifier
= Print features importance

Marko Tkal¢i¢, DP-202122-19 7/12



Exercise

= |ris dataset
= DecisionTreeClassifier
= Print features importance

iris = datasets.load_iris()
X = iris.data
y = iris.target

model = DecisionTreeClassifier()

model.fit(X, y)

importance = model.feature_importances_

for i,v in enumerate(importance):
print('Feature: %@d, Score: %.5f" % (i,v))

Marko Tkal¢i¢, DP-202122-19

7/12



Permutation Feature Importance

= Model agnostic
= Algorithm:

= Take a model that was fit to the training dataset
= Estimate the predictive performance of the model on an independent dataset (e.g.,
validation dataset) and record it as the baseline performance
= For each feature i
= randomly permute feature column i in the original dataset
= record the predictive performance of the model on the dataset with the permuted column
= compute the feature importance as the difference between the baseline performance (step 2) and
the performance on the permuted dataset

Marko Tkal¢i¢, DP-202122-19 8/12



Permutation Feature Importance

Feature: @, Score: 148.10397

from sklearn.datasets import make_regression Feature: 1, Score: 339.66791
from sklearn.neighbors import KNeighborsRegressor Feature: 2, Score: 144.91106
from sklearn.inspection import permutation_importance Feature: 3, Score: 57.40640

from matplotlib import pyplot Feature: 4, Score: 9704.56218

Feature: 5, Score: 7821.59872

X, y = make_regression(n_samples=1000, n_features=10, Feature: 6, Score: 884.23434
n_informative=5, random_state=1) Feature: 7, Score: 114.10732
model = KNeighborsRegressor() Feature: 8, Score: 141.39661

9

model.fit(X, y) Feature: 9, Score: 119.15848

results = permutation_importance(model, X, vy,
scoring="'neg_mean_squared_error')

importance = results.importances_mean
for i,v in enumerate(importance):
print('Feature: %@d, Score: %.5f' % (i,v))

Marko Tkal¢i¢, DP-202122-19 9/12



Exercise

= Classification dataset (1000,10,5)
= Train test splitting 0.33, LogisticRegression, Accuracy Score
= Calculate the accuracy score with the top 1,2,3,4,5 features

Marko Tkal¢i¢, DP-202122-19 10/12



Exercise

= Classification dataset (1000,10,5)
= Train test splitting 0.33, LogisticRegression, Accuracy Score
= Calculate the accuracy score with the top 1,2,3,4,5 features

X, y = make_classification(n_samples=1000, n_features=10, Feature: 0, 0.00660
n_informative=5, random_state=1) Feature: 1, 0.08380
X_train, X_test, y_train, y_test = train_test_split(X, vy, Feature: 2, 0.05100
test_size=0. 33, random_state=1) Feature: 3, : 0.01460
model = LogisticRegression() Feature: 4, 0.00120
model.fit(X_train, y_train) Feature: 5, 0.13140
results = permutation_importance(model, X, y, Feature: 6, 0.00240
scoring="'neg_mean_squared_error') Feature: 7, : -0.00040
importance = results.importances_mean Feature: 8, : 0.01340
for i,v in enumerate(importance): Feature: 9, : 0.02580
print('Feature: %@d, Score: %.5f" % (i,v)) Accuracy: 83.64
model = LogisticRegression() Accuracy: 46.97

model.fit(X_train, y_train)

y_test_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_test_pred)
print('Accuracy: %.2f' % (accuracy*100))

X_train = X_train[:,[5]1]

X_test = X_test[:,[5]]

model = LogisticRegression()
model.fit(X_train, y_train)

y_test_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_test_pred)
print('Accuracy: %.2f' % (accuracy*100))

Marko Tkal¢i¢, DP-202122-19 10/12



Table of Contents

References

Marko Tkal¢i¢, DP-202122-19 11/12



References

Part of the material has been taken from the following sources. The usage of the
referenced copyrighted work is in line with fair use since it is for nonprofit educational
purposes.

= https://machinelearningmastery.com/calculate-feature-importance-with-python/

Marko Tkal¢i¢, DP-202122-19 12/12



	Features
	References

