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Lesson 17: Linear Regression
For a start, let us construct a very simple data set. It will contain a 
just one continuous input feature (let’s call it x) and a continuous 
class (let’s call it y). We will use Paint Data, and then reassign one 
of the features to be a class by using Select Column and moving 
the feature y from the list of “Features” to a field with a target 
variable. It is always good to check the results, so we are including 
Data Table and Scatter Plot in the workflow at this stage. We will 
be modest this time and only paint 10 points and will use Put 
instead of the Brush tool.

We would like to build a model that predicts the value of class y 
from the feature x. Say that we would like our model to be linear, 
to mathematically express it as h(x)=휃0+휃1x. Oh, this is the 
equation of a line. So we would like to draw a line through our data 
points. The 휃0 is then an intercept, and 휃1 is a slope. But there are 
many different lines we could draw. Which one is the best one? 
Which one is the one that fits our data the most?
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In the Paint Data widget, remove 
the Class-2 label from the list. If 
you have accidentally left it while 
painting, don’t despair. The class 
variable will appear in the Select 
Columns widget, but you can 
“remove” it by dragging it into 
the Available Variables list. 
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The question above requires us to define what a good fit is. Say, 
this could be the error the fitted model (the line) makes when it 
predicts the value of y for a given data point (value of x). The 
prediction is h(x), so the error is h(x) - y. We should treat the 
negative and positive errors equally, plus, let us agree, we would 
prefer punishing larger errors more severely than smaller ones. 
Therefore, it is perfectly ok if we square the errors for each data 
point and then sum them up. We got our objective function! Turns 
out that there is only one line that minimizes this function. The 
procedure that finds it is called linear regression. For cases where 
we have only one input feature, Orange has a special widget in the 
educational add-on called Polynomial Regression.

Looks ok. Except that these data points do not appear exactly on 
the line. We could say that the linear model is perhaps too simple 
for our data sets. Here is a trick: besides column x, the widget 
Univariate Regression can add columns x2, x3… xn to our data set. 
The number n is a degree of polynomial expansion the widget 
performs.  Try setting this number to higher values, say to 2, and 
then 3, and then, say, to 9. Witho the degree of 3, we are then 
fitting the data to a linear function h(x) = 휃0 + 휃1x + 휃1x2 + 휃1x3.  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Do not worry about the strange 
name of the widget Polynomial 
Regression, we will get there in a 
moment.
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The trick we have just performed (adding the higher order features 
to the data table and then performing linear regression) is called 
Polynomial Regression. Hence the name of the widget. We get 
something reasonable with polynomials of degree 2 or 3, but then 
the results get really wild. With higher degree polynomials, we 
totally overfit our data.

Overfitting is related to the complexity of the model. In 
polynomial regression, the models are defined through parameters 
휃. The more parameters, the more complex is the model. 

Obviously, the simplest model has just one parameter (an 
intercept), ordinary linear regression has two (an intercept and a 
slope), and polynomial regression models have as many parameters 
as is the degree of the polynomial. It is easier to overfit with a 
more complex model, as this can adjust to the data better. But is 
the overfitted model really discovering the true data patterns? 
Which of the two models depicted in the figures above would you 
trust more?
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It is quite surprising to see that 
linear regression model can 
result in fitting non-linear 
(univariate) functions. That is,  
functions with curves, such as 
those on the figures. How is this 
possible? Notice though that the 
model is actually a hyperplane (a 
flat surface) in the space of many 
features (columns) that are 
powers of x. So for the degree 2, 
h(x)=휃0+휃1x+휃1x2 is a (flat) 

hyperplane. The visualization 
gets curvy only once we plot h(x) 
as a function of x. 


