TCS II
 Formal Languages and Computability 2018/19 2nd Midterm (A)

29. May 2019

Solve the assignments on your own.
Time limit is 90 minutes.
Good luck!

ASSIGNMENT	POINTS	OUT OF	ASSIGNMENT	POINTS	OUT OF
1			2		
3			4		

First and last name: \qquad

Student ID: \qquad

Signiture:

1. Assignment: (25 points)

Let's define the language:

$$
L_{1}=\left\{a^{n} b^{2 n} \mid n>0\right\}
$$

Questions:

1. Construct a PDA for L_{1}. For the PDA, write down the 7 -tuple defining it!
2. Write the grammar for L_{1}.
3. Assignment: (25 points)

You are given the following context free grammar (CFG) $G, \Sigma=\{a, b, c, d\}$:

$$
\begin{aligned}
& S \rightarrow A C B D \\
& A \rightarrow a A \mid a \\
& B \rightarrow b \mid A \\
& C \rightarrow c \\
& D \rightarrow d D|d d| a
\end{aligned}
$$

Questions:

1. Turn this grammar into Chomsky Normal Form (CNF) (if needed).
2. Using the CYK algorithm, check if the word acadd is in the language defined by grammar G.

3. Assignment: (30 points)

Construct a Turing machine (TM) that performs the addition of 2 natural numbers (greater than 0) in "unary" notation. Each of the numbers must be represented as a sequence of all 0 s; the two numbers should be separated by a single $1 ; B$ denotes the blank tape. Start in state q_{0} with the read/write head of the TM positioned at the leftmost character representing the first number.
This picture represents the initial configuration of your TM with the numbers 2 and 3 on the input tape:

... B	0	0	1	0	0	0	B	...

The result of your TM should be a single natural number, also in "unary" notation, with the read/write head positioned at its leftmost character, and the control unit in the (only) final state q_{F}.
This picture represents the final configuration of your TM with the results 5 $(=2+3)$ on the input tape:

QuESTIONS:

1. Write down the δ-function of the TM.
2. Using the Instantaneous descriptions (IDs), show how your TM computes $2+3=5$.

4. Assignment: (20 points)

You are given the following Boolean (or logical) expression (X, Y and Z are boolean variables; concatenation, + and - represent the operations $A N D, O R$ and NOT, respectively):
$(X+Y)(-Z)$

Questions:

1. Convert the given Boolean expression first to Conjunctive Normal Form (CNF) (if needed) and then to 3-Conjunctive Normal Form (3-CNF).
2. What is the budget of the Vertex Cover (VC) generated from the 3-CNF in the previous question?

HINT: You do not have to actually make the whole conversion from 3-CNF to VC ; just write down the budget.

