Theoretical Computer Science II Formal Languages and Computability 2018/19 Written Exam

7. June 2019

Solve the assignments on your own.
Time limit is 90 minutes.
Best of luck!

ASSIGNMENT	POINTS	OUT OF	ASSIGNMENT	POINTS	OUT OF
1			2		
3			4		

First and last name: \qquad

Student ID: \qquad

Signiture:

1. Assignment: (30 points)

Let's define languages:
$L_{1}=\left\{w x^{n} \mid w\right.$ is an arbitrary string containing x 's and y 's, of length $\left.n\right\}, \Sigma=\{x, y\}$
$L_{2}=\left\{w \mid(0+11)^{*} 10\right\}, \Sigma=\{0,1\}$

Questions: For every language:

1. Find out if the language is regular or not, justify your claim!
2. For every language, define a grammar for it.

Instructions:

If a language is regular, construct a deterministic finite automaton (you get some points for a non-deterministic one). If the language is not regular you must show that such an automaton cannot be constructed (pumping lemma for RL).
2. Assignment: (15 points)

You are given the following NFA:

Questions:
Transform the NFA to a DFA using the procedure shown in class.
3. Assignment: (25 points)

You are given the following context-free grammar:

$$
\begin{aligned}
S & \rightarrow E G F H \\
E & \rightarrow e E \mid e \\
F & \rightarrow f \mid E \\
G & \rightarrow g \\
H & \rightarrow h H|h h| e
\end{aligned}
$$

QUESTIONS:

1. Convert the grammar into the Chomsky normal form (show all steps of the conversion).
2. Use the CYK algorithm to check if the word egehh is in the language of the grammar.
3. Assignment: (30 points)

Let's define the following language:

$$
L_{3}=\left\{w 0 w^{R} \mid w \in(a+b)^{*}\right\}
$$

Questions:

1. Construct a Turing machine for the language L_{3}.

Write down the complete 7 -touple defining the TM.
2. Use instantaneous descriptions of the TM to show the derivation of the word $a b 0 b a$.

