1 P and NP

1.1 Intro

Problem = language **String** = instance of the problem

Decidable = a problem is decidable, if there is an algorithm for it Algorithm = a TM that halts on all inputs

Recursive languages: set of decidable problems

Time complexity T(n) ("to have a running time of T(n)"): given a TM M, and an input w, M halts after making at most T(n) moves

Problems solvable in Polynomial time (P):

- is $w \in L(G)$?
- Path from x to y in graph G = (V, E)
- ... (and many more)

Problems solvable in Nondeterministic Polynomial time (NP):

- Knapsack problem
- Graph coloring
- Traveling salesman problem
- ... (it's a long list!)

1.2 Boolean expressions

- Variables (0, 1)
- Operators (\land,\lor,\neg)

 $x \wedge \neg(y \lor z)$ $x \wedge -(y+z)$ Satisfiability problem (SAT): give a truth assignment that satisfies a BE. Cooke: SAT is NP-complete CSAT: given a boolean expression in CNF, is it satisfyable?

1.3 Normal forms

- Literal: variable or its negation $(x, \neg y)$
- Clause: OR / AND of two or more literals
- Conjunctive normal form (CNF): AND of clauses with OR-ed literals
- $(x \lor \neg y) \land (\neg x \lor z) \to (x + \bar{y})(\bar{x} + z)$
- k-CNF: each clause has exactly k literals

k-CNF: A CNF, where each clause has exactly k distinct literals.

k-SAT: Satisfyability problem of a k-CNF. A k-CNF is NP-complete when $k \ge 3$, but the 2-CNF is polynomially solvable.

1.4 Conversion from BE to CNF

There are two main ways to do it:

- 1. Use the reduction algorithm from SAT to CSAT.
 - (a) Push \neg below \lor, \land
 - i. $\neg (E \land F) \rightarrow \neg E \lor \neg F$ ii. $\neg (E \lor F) \rightarrow \neg E \land \neg F$ iii. $\neg (\neg E) \rightarrow E$
 - (b) Write the expression as a product of clauses by introducing new variables.
- 2. Use a truth table to find falsifying assignments.

1.5 Independent Set and Vertex Cover

Indepentend Set (IS): Let G = (V, E) be and undirected graph. We say that $I \subset V$ is an independent set, if no two nodes of I are connected by any edge of E. An IS is *maximal*, if you cannot find a larger IS for the same graph.

Vertex Cover (VS) (alternatively: Node Cover): Let G = (V, E) be and undirected graph. We say that $I \subset V$ is a vertex cover, if each edge $e \in E$ has at least one of its endpoints in I. A VC is *minimal*, if you cannot find a VC with fewer nodes for the same graph.