$1 \quad \mathrm{P}$ and NP

1.1 Intro

Problem $=$ language
String $=$ instance of the problem
Decidable $=$ a problem is decidable, if there is an algorithm for it
Algorithm $=\mathrm{a}$ TM that halts on all inputs
Recursive languages: set of decidable problems
Time complexity $T(n)$ ("to have a running time of $T(n)$ "): given a TM M, and an input w, M halts after making at most $T(n)$ moves
Problems solvable in Polynomial time (P) :

- is $w \in L(G)$?
- Path from x to y in graph $G=(V, E)$
- ... (and many more)

Problems solvable in Nondeterministic Polynomial time ($N P$):

- Knapsack problem
- Graph coloring
- Traveling salesman problem
- ... (it's a long list!)

1.2 Boolean expressions

- Variables $(0,1)$
- Operators (\wedge, \vee, \neg)
$x \wedge \neg(y \vee z)$
$x \wedge-(y+z)$
Satisfiability problem (SAT): give a truth assignment that satisfies a BE.
Cooke: SAT is NP-complete
CSAT: given a boolean expression in CNF, is it satisfyable?

1.3 Normal forms

- Literal: variable or its negation $(x, \neg y)$
- Clause: OR / AND of two or more literals
- Conjunctive normal form (CNF): AND of clauses with OR-ed literals
- $(x \vee \neg y) \wedge(\neg x \vee z) \rightarrow(x+\bar{y})(\bar{x}+z)$
- k-CNF: each clause has exactly k literals
k-CNF: A CNF, where each clause has exactly k distinct literals.
k-SAT: Satisfiyability problem of a k-CNF. A k-CNF is NP-complete when $k \geq 3$, but the 2-CNF is polynomially solvable.

1.4 Conversion from BE to CNF

There are two main ways to do it:

1. Use the reduction algorithm from SAT to CSAT.
(a) Push \neg below \vee, \wedge
i. $\neg(E \wedge F) \rightarrow \neg E \vee \neg F$
ii. $\neg(E \vee F) \rightarrow \neg E \wedge \neg F$
iii. $\neg(\neg E) \rightarrow E$
(b) Write the expression as a product of clauses by introducing new variables.
2. Use a truth table to find falsifying assignments.

1.5 Independent Set and Vertex Cover

Indepentend Set (IS): Let $G=(V, E)$ be and undirected graph. We say that $I \subset V$ is an independent set, if no two nodes of I are connected by any edge of E. An IS is maximal, if you cannot find a larger IS for the same graph.

Vertex Cover (VS) (alternatively: Node Cover): Let $G=(V, E)$ be and undirected graph. We say that $I \subset V$ is a vertex cover, if each edge $e \in E$ has at least one of its endpoints in I. A VC is minimal, if you cannot find a VC with fewer nodes for the same graph.

