
1 P and NP

1.1 Intro

Problem = language
String = instance of the problem

Decidable = a problem is decidable, if there is an algorithm for it
Algorithm = a TM that halts on all inputs

Recursive languages: set of decidable problems
Time complexity T (n) (”to have a running time of T (n)”): given a TM M, and an input w, M halts after
making at most T (n) moves
Problems solvable in Polynomial time (P ):

• is w ∈ L(G)?

• Path from x to y in graph G = (V,E)

• ... (and many more)

Problems solvable in Nondeterministic Polynomial time (NP ):

• Knapsack problem

• Graph coloring

• Traveling salesman problem

• ... (it’s a long list!)

1.2 Boolean expressions

• Variables (0, 1)

• Operators (∧,∨,¬)

x ∧ ¬(y ∨ z)
x ∧ −(y + z)
Satisfiability problem (SAT): give a truth assignment that satisfies a BE.
Cooke: SAT is NP-complete
CSAT: given a boolean expression in CNF, is it satisfyable?

1.3 Normal forms

• Literal: variable or its negation (x,¬y)

• Clause: OR / AND of two or more literals

• Conjunctive normal form (CNF): AND of clauses with OR-ed literals

• (x ∨ ¬y) ∧ (¬x ∨ z)→ (x + ȳ)(x̄ + z)

• k-CNF: each clause has exactly k literals

k-CNF: A CNF, where each clause has exactly k distinct literals.
k-SAT: Satisfiyability problem of a k-CNF. A k-CNF is NP-complete when k ≥ 3, but the 2-CNF is
polynomially solvable.

1



1.4 Conversion from BE to CNF

There are two main ways to do it:

1. Use the reduction algorithm from SAT to CSAT.

(a) Push ¬ below ∨,∧
i. ¬(E ∧ F )→ ¬E ∨ ¬F
ii. ¬(E ∨ F )→ ¬E ∧ ¬F
iii. ¬(¬E)→ E

(b) Write the expression as a product of clauses by introducing new variables.

2. Use a truth table to find falsifying assignments.

1.5 Independent Set and Vertex Cover

Indepentend Set (IS): Let G = (V,E) be and undirected graph. We say that I ⊂ V is an independent
set, if no two nodes of I are connected by any edge of E. An IS is maximal, if you cannot find a larger IS
for the same graph.

Vertex Cover (VS) (alternatively: Node Cover): Let G = (V,E) be and undirected graph. We
say that I ⊂ V is a vertex cover, if each edge e ∈ E has at least one of its endpoints in I. A VC is minimal,
if you cannot find a VC with fewer nodes for the same graph.

2


