1 Pumping lemma for context-free languages

The pumping lemma for context-free languages (Bar-Hillel lemma): Let L be a CFL, then there exists $p>0$ such that if $z \in L$ and $|z| \geq p$, then z can be written as uvwxy where

1. $|v w x| \leq p$
2. $v x \neq \varepsilon$
3. $u v^{k} w x^{k} y \in L \quad \forall k \geq 0$

Pumping Lemma for CFL can be used to prove that some languages are not context free.

Exercise 1:
$\Sigma=\{a, b, c\}$
$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
Exercise 2:
$\Sigma=\{a, b, c\}$
$L=\left\{a^{n} b^{m} c^{n} \mid n \geq m\right\}$
Exercise 3:
$\Sigma=\{a, b, c\}$
$L=\left\{a^{i} b^{j} c^{k} \mid i \leq j \leq k\right\}$
Exercise 4:
$\Sigma=\{a, b\}$
$L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
Exercise 5:
$\Sigma=\{a, b\}$
$L=\left\{a^{p} \mid p\right.$ prime $\}$

2 Testing membership in a CFL

We can decide the if a string w is the member of a context free language L. An efficient way to do this is the dynamic-programming (table filling) CYK (Cocke-Younger-Kasami) Algorithm.

How can we decide if string $w=a_{1} a_{2} a_{3} a_{4} a_{5}$ is in L? We need the CNF grammar for L to do this, and fill out the following table.

$$
\begin{array}{lllll}
x_{15} & & & & \\
x_{14} & x_{25} & & & \\
x_{13} & x_{24} & x_{35} & & \\
x_{12} & x_{23} & x_{34} & x_{45} & \\
x_{11} & x_{22} & x_{33} & x_{44} & x_{55} \\
\hline a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}
$$

- Each row of the table corresponds to a particular length of substrings of w.
- $x_{i j}$ corresponds to the subset of variables that can generate substring $a_{i} a_{i+1} \ldots a_{j}$
- We start by computing substrings of length 1 .
- Substrings of length k will be generated by combining substrings of length $k-l$ and l (for all l values).
- The string w is a member of L, if $S \in x_{15}$

Exercise 1: Use the CYK algorithm to determine if baaba $\in L(G)$ holds, where the productions of your grammar G are
$S \rightarrow A B \mid B C$
$A \rightarrow B A \mid a$
$B \rightarrow C C \mid b$
$C \rightarrow A B \mid a$

Exercise 2: Use the CYK algorithm to determine if cabab $\in L(G)$ holds, where the productions of your grammar G are
$S \rightarrow A B \mid b$
$A \rightarrow C B|A A| a$
$B \rightarrow A S \mid b$
$C \rightarrow B S \mid c$

Exercise 3: Use the CYK algorithm to determine if $a b a a b \in L(G)$ holds, where the productions of your grammar G are

$$
\begin{aligned}
& S \rightarrow A B|S S| a \\
& A \rightarrow B S|C D| b \\
& B \rightarrow D D \mid b \\
& C \rightarrow D E|a| b \\
& D \rightarrow a \\
& E \rightarrow S S
\end{aligned}
$$

Exercise 3: Use the CYK algorithm to determine if she eats a fork with a fish \in $L(G)$ holds, where $G=\{\{S, V P, P P, N P, V, P, N, D\},\{a$, eats, fish, fork, with $\}, R, S\}$, and the productions of R are

$$
\begin{array}{r}
S \rightarrow N P V P \\
V P \rightarrow V P P P \\
V P \rightarrow \text { eats } \\
P P \rightarrow P N P \\
N P \rightarrow D N \\
V \rightarrow \text { eats } \\
P \rightarrow \text { with } \\
N \rightarrow \text { fish } \\
N \rightarrow \text { fork } \\
D \rightarrow a
\end{array}
$$

