1 Context-free grammar

A context-free grammar (CFG) can be defined as the tuple $G = (\Gamma, \Sigma, P, S)$, where:

- Γ : variables (A,B,...)
- Σ : terminals (a,b,...)
- P : productions (e.g A \rightarrow aB)
- S : start symbol $(S \in \Gamma)$

Example (Palindromes):

 $P \rightarrow \varepsilon$ (the empty string is a palindrome) $P \rightarrow 0$ $P \rightarrow 1$ $P \rightarrow 0P0$ (any palindrome surrounded by two 0s is also a palindrome) $P \rightarrow 1P1$ (any palindrome surrounded by two 1s is also a palindrome)

We could write this in a simpler way as:

 $P \rightarrow \varepsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$ (the vertical line represents OR, allowing you to merge multiple productions with the same head)

Other example:

$$\Sigma = \{a, b, 0, 1, (,), *\}$$

$$\begin{split} I &\rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ E &\rightarrow I \mid E * E \mid E + E \mid (E) \end{split}$$

Leftmost derivation $E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E \Rightarrow_{lm} a * (E) \Rightarrow_{lm} a * (E + E) \Rightarrow_{lm} \dots$

Rightmost derivation $E \Rightarrow_{rm} E * E \Rightarrow_{rm} E * (E) \Rightarrow_{rm} E * (E + E) \Rightarrow_{rm} E * (E + I) \Rightarrow_{rm} \dots$

Continue the above derivations, and show that a * (a + b00) is in the language of E.

2 Chomsky Normal Form

Every context-free language without ε has a grammar G in which all productions have one of the following forms:

1. $A \rightarrow BC$, where A, B and C are all variables, or

2. $A \rightarrow a$, where A is variable and a is a terminal

Further, G also has no useless symbols. Such a grammar is in *Chomsky Normal Form* (CNF).

We say that X is a useful symbol if: $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ X is generating if: $X \Rightarrow^* w$ X is reachable if: $S \Rightarrow^* \alpha X \beta$ Useful symbols are both generating and reachable. What do you think of this grammar? $S \rightarrow AB \mid a$ $A \rightarrow b$

Answer:

B is a useless symbol. It's reachable $(S \to AB)$, but not generating. Because of this, we should delete $S \to AB$. This leaves us with

 $\begin{array}{c} S \rightarrow a \\ A \rightarrow b \end{array}$

Again, A is useless. It's generating $(A \to b)$, but it's not reachable from S. Deleting $A \to b$ leaves us with $S \to a$

which is the final form of our grammar.

Variable A is nullable if $A \Rightarrow^* \varepsilon$

To convert a grammar to CNF, we should:

- 1. remove useless symbols
- 2. remove ε productions (e.g. $A \to \varepsilon$)
- 3. remove unit productions (e.g. $A \to B$)
- 4. modify bodies of length 2 or more to contain only variables
- 5. break bodies of length 3 or more

Example 1: $S \rightarrow AB$ $A \rightarrow aAA \mid \varepsilon$ $B \rightarrow bBB \mid \varepsilon$

Answer:

All symbols are useful. A and B are reachable $(S \Rightarrow AB)$, and they are both generating $(A \Rightarrow^* a \text{ and } B \Rightarrow^* b)$.

We have to get rid of ε -productions $A \to \varepsilon$ and $B \to \varepsilon$ $S \rightarrow AB \mid A \mid B$ $A \to aAA \mid aA \mid a$ $B \rightarrow bBB \mid bB \mid b$ We should remove unit productions $S \to A$ and $S \to B$ $S \rightarrow AB \mid aAA \mid aA \mid a \mid bBB \mid bB \mid b$ $A \rightarrow aAA \mid aA \mid a$ $B \rightarrow bBB \mid bB \mid b$ To modify bodies of length 2 or more to contain only variables, we introduce $A_1 \rightarrow a$ and $B_1 \rightarrow b$ $S \rightarrow AB \mid A_1AA \mid A_1A \mid a \mid B_1BB \mid B_1B \mid b$ $A \to A_1 A A \mid A_1 A \mid a$ $B \rightarrow B_1 B B \mid B_1 B \mid b$ $A_1 \to a$ $B_1 \rightarrow b$ To break up bodies of length 3 or more, we introduce $A_2 \rightarrow A_1 A$ and $B_2 \rightarrow B_1 B$ $S \to AB \mid A_2A \mid A_1A \mid a \mid B_2B \mid B_1B \mid b$ $A \to A_2 A \mid A_1 A \mid a$ $B \to B_2 B \mid B_1 B \mid b$ $A_1 \rightarrow a$

 $\begin{array}{l} B_1 \rightarrow b \\ A_2 \rightarrow A_1 A \\ B_2 \rightarrow B_1 B \end{array}$

The above grammar is in CNF, because it satisfies the above requirements. If we still had more productions with body length 3 or more, we would have to repeat this last step again in a similar fashion.

 $\begin{array}{l} \text{Example 2:} \\ S \rightarrow aXbX \\ X \rightarrow aY \mid bY \mid \varepsilon \\ Y \rightarrow X \mid c \end{array}$

 $\begin{array}{l} \text{Example 3:} \\ S \rightarrow AbA \mid a \\ A \rightarrow Aa \mid \varepsilon \end{array}$