The pumping lemma: If $L$ is a regular language, then there is a number $p>0$ (sometimes called the pumping length) such that if $w \in L$ and $|w| \geq p$, then $w$ can be written as $x y z$ where

1. $|x y| \leq p$
2. $y \neq \varepsilon$
3. $x y^{k} z \in L \quad \forall k \geq 0$

Pumping Lemma can be useful to prove that some languages are not regular.

Example 1:
$\Sigma=\{0,1\}$
$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

## Solution:

We will use an indirect proof to show that L is not a regular language. Suppose that L is regular, which means that any string $w \in L$ of length not smaller than $p$ should satisfy the above conditions. Let

$$
w=0^{p} 1^{p}
$$

It can be seen that $|w|=2 p$, which satisfies the condition $|w| \geq p$. If we divide $w$ into parts $x, y$ and $z$, we know that $x$ and $y$ contain only 0 symbols; $|x y| \leq p$ states that they are at most $p$ symbol long, and our first $p$ symbols are 0 s in the string.
Because $y \neq \varepsilon$, it has to contain at least one 0 symbol. Pumping $y\left(x y^{k} z\right)$ for any $k \neq 1$ would result in a new string where the number of 0 s is not equal to the number of 1 s . (for example, $w_{2}=0^{p-|y|} 1^{p}$ for $k=0, w_{3}=0^{p+|y|} 1^{p}$ for $k=2, w_{4}=0^{p+2|y|} 1^{p}$ for $k=3$, etc.). As $w_{2} \notin L$, we came to a contradiction, meaning that our original assumption is not true; L is not regular.

Example 2:
$\Sigma=\{0,1\}$
$L=\{w w\}$
Example 3:
$\Sigma=\{1, \#\}$
$L=\left\{1^{i} \# 1^{j} \# 1^{i+j} \mid i \geq 0\right\}$
Example 4:
$L=\{w| | w \mid$ is prime $\}$

