The pumping lemma: If L is a regular language, then there is a number p > 0 (sometimes called the pumping length) such that if $w \in L$ and $|w| \ge p$, then w can be written as xyz where

- 1. $|xy| \leq p$
- 2. $y \neq \varepsilon$
- 3. $xy^k z \in L \quad \forall k \ge 0$

Pumping Lemma can be useful to prove that some languages are not regular.

Example 1: $\Sigma = \{0, 1\}$ $L = \{0^n 1^n \mid n \ge 0\}$

Solution:

We will use an indirect proof to show that L is not a regular language. Suppose that L is regular, which means that any string $w \in L$ of length not smaller than p should satisfy the above conditions. Let

 $w = 0^{p} 1^{p}$

It can be seen that |w| = 2p, which satisfies the condition $|w| \ge p$. If we divide w into parts x, y and z, we know that x and y contain only 0 symbols; $|xy| \le p$ states that they are at most p symbol long, and our first p symbols are 0s in the string.

Because $y \neq \varepsilon$, it has to contain at least one 0 symbol. Pumping $y(xy^kz)$ for any $k \neq 1$ would result in a new string where the number of 0s is not equal to the number of 1s. (for example, $w_2 = 0^{p-|y|}1^p$ for k = 0, $w_3 = 0^{p+|y|}1^p$ for k = 2, $w_4 = 0^{p+2|y|}1^p$ for k = 3, etc.). As $w_2 \notin L$, we came to a contradiction, meaning that our original assumption is not true; L is not regular.

Example 2: $\Sigma = \{0, 1\}$ $L = \{ww\}$

Example 3: $\Sigma = \{1, \#\}$ $L = \{1^i \# 1^j \# 1^{i+j} \mid i \ge 0\}$

Example 4: $L = \{w \mid |w| \text{ is prime}\}$