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Today

Non-parametric models

I distance
I non-linear decision boundaries

Note: We will mainly use today’s method for classification, but it can also be
used for regression
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Classification: Oranges and Lemons
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Classification: Oranges and Lemons

Can$construct$simple$
linear$decision$
boundary:$$$$
$$$y$=$sign(w0$+$w1x1$$$$$$$$$$$$$$$$$$$

$$$$$$$$+$w2x2)$
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What is the meaning of ”linear” classification

Classification is intrinsically non-linear

I It puts non-identical things in the same class, so a difference in the
input vector sometimes causes zero change in the answer

Linear classification means that the part that adapts is linear (just like linear
regression)

z(x) = wTx + w0

with adaptive w,w0

The adaptive part is followed by a non-linearity to make the decision

y(x) = f (z(x))

What functions f () have we seen so far in class?
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Classification as Induction
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Instance-based Learning

Alternative to parametric models are non-parametric models

These are typically simple methods for approximating discrete-valued or
real-valued target functions (they work for classification or regression
problems)

Learning amounts to simply storing training data

Test instances classified using similar training instances

Embodies often sensible underlying assumptions:

I Output varies smoothly with input
I Data occupies sub-space of high-dimensional input space
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Nearest Neighbors

Training example in Euclidean space: x ∈ <d

Idea: The value of the target function for a new query is estimated from the
known value(s) of the nearest training example(s)

Distance typically defined to be Euclidean:

||x(a) − x(b)||2 =

√√√√ d∑
j=1

(x
(a)
j − x

(b)
j )2

Algorithm:

1. Find example (x∗, t∗) (from the stored training set) closest to
the test instance x. That is:

x∗ = argmin
x(i)∈train. set

distance(x(i), x)

2. Output y = t∗

Note: we don’t really need to compute the square root. Why?
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Nearest Neighbors: Decision Boundaries

Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred

Decision boundaries: Voronoi diagram visualization
I show how input space divided into classes
I each line segment is equidistant between two points of opposite classes
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Nearest Neighbors: Decision Boundaries

Example: 2D decision boundary
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Nearest Neighbors: Decision Boundaries

Example: 3D decision boundary
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Nearest Neighbors: Multi-modal Data

Nearest Neighbor approaches can work with multi-modal data

[Slide credit: O. Veksler]
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Nearest Neighbors
[Pic by Olga Veksler]

Nearest neighbors sensitive to mis-labeled data (“class noise”). Solution?

Smooth by having k nearest neighbors vote

Algorithm (kNN):

1. Find k examples {x(i), t(i)} closest to the test instance x
2. Classification output is majority class

y = arg max
t(z)

k∑
r=1

δ(t(z), t(r))
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k-Nearest Neighbors

How do we choose k?

Larger k may lead to better performance

But if we set k too large we may end up looking at samples that are not
neighbors (are far away from the query)

We can use cross-validation to find k

Rule of thumb is k < sqrt(n), where n is the number of training examples

[Slide credit: O. Veksler]
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k-Nearest Neighbors: Issues & Remedies

If some attributes (coordinates of x) have larger ranges, they are treated as
more important

I normalize scale
I Simple option: Linearly scale the range of each feature to be, e.g., in

range [0,1]
I Linearly scale each dimension to have 0 mean and variance 1 (compute

mean µ and variance σ2 for an attribute xj and scale: (xj −m)/σ)

I be careful: sometimes scale matters

Irrelevant, correlated attributes add noise to distance measure

I eliminate some attributes
I or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)

I Hamming distance
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k-Nearest Neighbors: Issues (Complexity) & Remedies

Expensive at test time: To find one nearest neighbor of a query point x, we
must compute the distance to all N training examples. Complexity: O(kdN)
for kNN

I Use subset of dimensions
I Pre-sort training examples into fast data structures (e.g., kd-trees)
I Compute only an approximate distance (e.g., LSH)
I Remove redundant data (e.g., condensing)

Storage Requirements: Must store all training data

I Remove redundant data (e.g., condensing)
I Pre-sorting often increases the storage requirements

High Dimensional Data: “Curse of Dimensionality”

I Required amount of training data increases exponentially with
dimension

I Computational cost also increases

[Slide credit: David Claus]
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k-Nearest Neighbors Remedies: Remove Redundancy

If all Voronoi neighbors have the same class, a sample is useless, remove it

[Slide credit: O. Veksler]
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Example: Digit Classification

Decent performance when lots of data

[Slide credit: D. Claus]
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Fun Example: Where on Earth is this Photo From?

Problem: Where (e.g., which country or GPS location) was this picture
taken?

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]
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Fun Example: Where on Earth is this Photo From?

Problem: Where (e.g., which country or GPS location) was this picture
taken?

I Get 6M images from Flickr with GPs info (dense sampling across world)
I Represent each image with meaningful features
I Do kNN!

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]
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Fun Example: Where on Earth is this Photo From?

Problem: Where (eg, which country or GPS location) was this picture
taken?

I Get 6M images from Flickr with gps info (dense sampling across world)
I Represent each image with meaningful features
I Do kNN (large k better, they use k = 120)!

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]
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K-NN Summary

Naturally forms complex decision boundaries; adapts to data density

If we have lots of samples, kNN typically works well

Problems:
I Sensitive to class noise
I Sensitive to scales of attributes
I Distances are less meaningful in high dimensions
I Scales linearly with number of examples

Inductive Bias: What kind of decision boundaries do we expect to find?
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