Lesson 15: Model Scoring

In multiple choice exams, you are graded according to the number of correct answers. The same goes for classifiers: the more correct predictions they make, the better they are. Nothing could make more sense. Right?

Maybe not. Dr. Smith is a specialist of a type and his diagnosis is correct in 98% of the cases. Would you consider visiting him if you have some symptoms related to his speciality?

Not necessarily. His specialty, in fact, are rare diseases (2 out of 100 of his patients have it) and, being lazy, he always dismisses everybody as healthy. His predictions are worthless — although extremely accurate. Classification accuracy is not an absolute measure, which can be judged out of context. At the very least, it has to be compared with the frequency of the majority class, which is, in case of rare diseases, quite ... major.

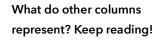
For instance, on GEO data set GDS 4182, the classification tree achieves 78% accuracy on cross validation, which may be reasonably good. Let us compare this with the Constant model, which implements Dr. Smith's strategy by always predicting the majority. It gets 83%. Classification trees are not so good after all, are they?

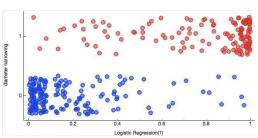
On the other hand, their accuracy on GDS 3713 is 57%, which seems rather good in comparison with the 50% achieved by predicting the majority.

The problem with classification accuracy goes deeper, though.

Classifiers usually make predictions based on probabilities they compute. If a data instance belongs to class A with a probability of 80% and to B with a probability of 20%, it is classified as A. This makes sense, right?

Maybe not, again. Say you fall down the stairs and your leg hurts. You open Orange, enter some data into your favorite model





Classes versus probabilities estimated by logistic regression. Can you replicate this image?

and compute a 20% of having your leg broken. So you assume your leg is not broken and you take an aspirin. Or perhaps not?

What if the chance of a broken leg was just 10%? 5%? 0.1%?

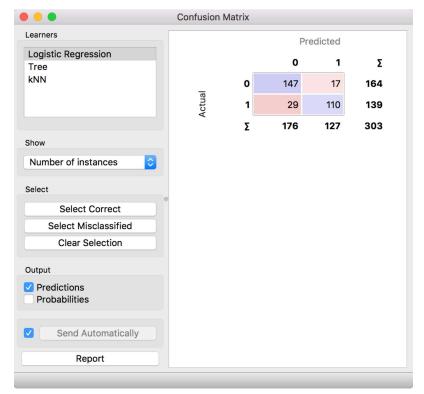
Say we decide that any leg with a 1% chance of being broken will be classified as broken. What will this do to our classification threshold? It is going to decrease badly — but we apparently do not care. What do we do care about then? What kind of "accuracy" is important?

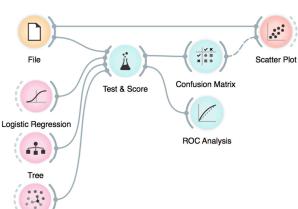
Not all mistakes are equal. We can summarize them in the Confusion Matrix. Here is one for logistic regression on the heart disease data.

These numbers in the Confusion Matrix have names. An instance can be classified as positive or negative; imagine this as being positive or negative when being tested for some medical condition. This classification can be true or false. So there are four options, true positive (TP), false positive (FP), true negative (TN) and false negative (FN).

Identify them in the table!

Use the output from Confusion Matrix as a subset for Scatter plot to explore the data instances that were misclassified in a certain way.





Logistic regression correctly classifies 147 healthy persons and 110 of the sick, the numbers on the diagonal. Classification accuracy is then 257 out of 303, which is 85%.

17 healthy people were unnecessarily scared. The opposite error is worse: the heart problems of 29 persons went undetected. We need to distinguish between these two kinds of mistakes.

We are interested in the probability that a person who has some problem will be correctly diagnosed. There were 139 such cases, and 110 were discovered. The proportion is 110 / 139 = 0.79. This measure is called *sensitivity* or *recall* or *true positive rate* (*TPR*).

If you were interested only in sensitivity, though, here's Dr. Smith's associate partner — wanting to be on the safe side, she considers everybody ill, so she has a perfect sensitivity of 1.0.

To counterbalance the sensitivity, we compute the opposite: what is the proportion of correctly classified *negative* instances? 147 out of 164, that is, 90%. This is called *specificity* or *true negative rate*.

If you are interested in a complete list, see the Wikipedia page on Receiver operating characteristic, https://en.wikipedia.org/wiki/ Receiver_operating_characteristic

So, if you're classified as OK, you have a 90% chance of actually being OK? No, it's the other way around: 90% is the chance of being classified as OK, if you are OK. (Think about it, it's not as complicated as it sounds). If you're interested in your chance of being OK if the classifier tells you so, you look for the *negative predictive value*. Then there's also *precision*, the probability of being positive if you're classified as such. And the *fall-out* and *negative likelihood ratio* and ... a whole list of other indistinguishable fancy names, each useful for some purpose.