For this lesson, load the data from imports-85.tab using the File widget and Browse documentation data sets.

Continuize

Target or first value as base

One attribute per value Ignore multinomial attributes

Treat as ordinal

Numeric Features

Most frequent value as base

Remove categorical attributes

Divide by number of values

Leave them as they are

Normalize by span
Normalize by standard deviation

**Categorical Features** 

## Lesson 22: Feature Scoring and Selection

Linear regression infers a model that estimate the class, a realvalued feature, as a sum of products of input features and their weights. Consider the data on prices of imported cars in 1985.

| • |    | •      |             |             | Data Table       | e (1)       |             |       |        |
|---|----|--------|-------------|-------------|------------------|-------------|-------------|-------|--------|
|   |    | height | curb-weight | engine-type | num-of-cylinders | engine-size | fuel-system | bore  | stroke |
| 0 | 1  | 48.800 | 2548.000    | dohc        | four             | 130.000     | mpfi        | 3.470 | 2.680  |
|   | 2  | 48.800 | 2548.000    | dohc        | four             | 130.000     | mpfi        | 3.470 | 2.680  |
|   | 3  | 52.400 | 2823.000    | ohcv        | six              | 152.000     | mpfi        | 2.680 | 3.470  |
|   | 4  | 54.300 | 2337.000    | ohc         | four             | 109.000     | mpfi        | 3.190 | 3.400  |
|   | 5  | 54.300 | 2824.000    | ohc         | five             | 136.000     | mpfi        | 3.190 | 3.400  |
|   | 6  | 53.100 | 2507.000    | ohc         | five             | 136.000     | mpfi        | 3.190 | 3.400  |
|   | 7  | 55.700 | 2844.000    | ohc         | five             | 136.000     | mpfi        | 3.190 | 3.400  |
|   | 8  | 55.700 | 2954.000    | ohc         | five             | 136.000     | mpfi        | 3.190 | 3.400  |
|   | 9  | 55.900 | 3086.000    | ohc         | five             | 131.000     | mpfi        | 3.130 | 3.400  |
|   | 10 | 52.000 | 3053.000    | ohc         | five             | 131.000     | mpfi        | 3.130 | 3.400  |
|   | 11 | 54.300 | 2395.000    | ohc         | four             | 108.000     | mpfi        | 3.500 | 2.800  |
|   | 12 | 54.300 | 2395.000    | ohc         | four             | 108.000     | mpfi        | 3.500 | 2.800  |
|   | 13 | 54.300 | 2710.000    | ohc         | six              | 164.000     | mpfi        | 3.310 | 3.190  |
|   | 14 | 54.300 | 2765.000    | ohc         | six              | 164.000     | mpfi        | 3.310 | 3.190  |
|   | 15 | 55.700 | 3055.000    | ohc         | six              | 164.000     | mpfi        | 3.310 | 3.190  |
|   | 16 | 55.700 | 3230.000    | ohc         | six              | 209.000     | mpfi        | 3.620 | 3.390  |
|   | 17 | 53.700 | 3380.000    | ohc         | six              | 209.000     | mpfi        | 3.620 | 3.390  |
|   | 18 | 56.300 | 3505.000    | ohc         | six              | 209.000     | mpfi        | 3.620 | 3.390  |

Inspecting this data set in a Data Table, it shows that some features, like fuel-system, enginetype and many others, are discrete. Linear regression only works with numbers. In Orange, linear regression will automatically convert all discrete values to numbers, most often using several features to represent a single discrete features. We also do this conversion manually by



using Continuize widget.

Before we continue, you should check what Continuize actually does and how it converts the nominal features into realvalued features. The table below should provide sufficient illustration.

## Categorical Outcomes • Leave it as it is • Treat as ordinal • Divide by number of values • One class per value Value Range • From -1 to 1 • From 0 to 1 Report

Apply Automatically

|    | •           |                   | Data Tab  | le       |                |            |
|----|-------------|-------------------|-----------|----------|----------------|------------|
|    | symboling=3 | normalized-losses | make=audi | make=bmw | make=chevrolet | make=dodge |
| 1  | 1.000       | ſ                 | 0.000     | 0.000    | 0.000          | 0.000      |
| 2  | 1.000       | ?                 | 0.000     | 0.000    | 0.000          | 0.000      |
| 3  | 0.000       | ?                 | 0.000     | 0.000    | 0.000          | 0.000      |
| 4  | 0.000       | 1.189             | 1.000     | 0.000    | 0.000          | 0.000      |
| 5  | 0.000       | 1.189             | 1.000     | 0.000    | 0.000          | 0.000      |
| 6  | 0.000       | ?                 | 1.000     | 0.000    | 0.000          | 0.000      |
| 7  | 0.000       | 1.019             | 1.000     | 0.000    | 0.000          | 0.000      |
| 8  | 0.000       | ?                 | 1.000     | 0.000    | 0.000          | 0.000      |
| 9  | 0.000       | 1.019             | 1.000     | 0.000    | 0.000          | 0.00       |
| 10 | 0.000       | ?                 | 1.000     | 0.000    | 0.000          | 0.00       |
| 11 | 0.000       | 1.981             | 0.000     | 1.000    | 0.000          | 0.00       |
| 12 | 0.000       | 1.981             | 0.000     | 1.000    | 0.000          | 0.00       |
| 13 | 0.000       | 1.868             | 0.000     | 1.000    | 0.000          | 0.00       |
| 14 | 0.000       | 1.868             | 0.000     | 1.000    | 0.000          | 0.000      |
| 15 | 0.000       | ?                 | 0.000     | 1.000    | 0.000          | 0.000      |
| 16 | 0.000       | ?                 | 0.000     | 1.000    | 0.000          | 0.000      |
| 17 | 0.000       | ?                 | 0.000     | 1.000    | 0.000          | 0.00       |
| 18 | 0.000       | ?                 | 0.000     | 1.000    | 0.000          | 0.00       |
| 19 | 0.000       | -0.028            | 0.000     | 0.000    | 1.000          | 0.00       |
| 20 | 0.000       | -0.679            | 0.000     | 0.000    | 1.000          | 0.00       |

Now to the core of this lesson. Our workflow reads the data, coninuizes it such that we also normalize all the features to bring them the to equal scale, then we load the data into Linear Regression widget and check out the feature coefficients in the Data Table.



In Linear Regression, we will use L1 regularization. Compared to L2 regularization, which aims to minimize the sum of squared weights, L1 regularization is more rough and minimizes the sum of absolute values of the weights. The result of this "roughness" is that many of the feature will get zero weights.

| •  | Data Table         |              |  |  |
|----|--------------------|--------------|--|--|
|    |                    |              |  |  |
|    | name               | coef 🔻       |  |  |
| 1  | intercept          | 14781.0739   |  |  |
| 9  | make=bmw           | 3736.1386877 |  |  |
| 56 | engine-size        | 3451.7025316 |  |  |
| 22 | make=porsche       | 3282.1956614 |  |  |
| 16 | make=mercedes-benz | 3132.88673   |  |  |
| 67 | horsepower         | 1348.37923   |  |  |
| 41 | width              | 1136.7353605 |  |  |
| 43 | curb-weight        | 756.6294283  |  |  |
| 68 | peak-rpm           | 616.5482117  |  |  |
| 37 | drive-wheels=rwd   | 586.4145233  |  |  |
| 66 | compression-ratio  | 445.2958132  |  |  |
| 46 | engine-type=ohc    | 197.4172805  |  |  |
| 42 | height             | 119.0028342  |  |  |
| 70 | highway-mpg        | -0.0000000   |  |  |
| 69 | city-mpg           | -0.0000000   |  |  |
| 64 | bore               | -0.0000000   |  |  |
| 63 | fuel-system=spfi   | -0.0000000   |  |  |
| 62 | fuel-system=spdi   | -0.0000000   |  |  |
| 61 | fuel-system=mpfi   | 0.0000000    |  |  |
| 60 | fuel-system=mfi    | -0 000000    |  |  |

But this may be also exactly what we want. We want to select only the most important features, and want to see how the model that uses only a smaller subset of features actually behaves. Also, this smaller set of features is ranked. Engine size is a huge factor in pricing of our cars, and so is the make, where Porsche, Mercedes and BMW cost more than other cars (ok, no news here).

We should notice that the

number of features with non-zero weights varies with regularization strength. Stronger regularization would result in fewer features with non-zero weights.

