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1 Roadmap

– “What will this be about?”

Mostly, my research and related literature (“dynamic” may evolve):

Strategic environments with incomplete information; institutions which interactions to achieve

maximal possible welfare (economic efficiency) ; robustness to details of informational assump-

tions, including knowledge of participants (who are rational) regarding other participants’ ra-

tionality.

No knowledge of the details of the probability distribution over unknown (private) parameters.

1. Fundamentals.

Four important topics:

(i) Complete information: strategic concepts (intro);

(ii) Complete info: measurement of efficiency (intro);

(iii) Incomplete info: strategic concepts (intro) -¿ dominant strategies and other.
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(iv) Incomplete info: measurement of welfare (intro+)

2. Economic institutions.

“games” conceived to achieve certain results;

(i) Game of complete information (intro)

(ii) Game of incomplete information (intro)

(iii) Revelation principle (dominant strategies) and direct revelation mechanisms (intro+)

(iv) A more general version of revelation principle (maybe)

3. Side questions (for now): knowledge and rationality

4. Application(s) (most): Auction(s), Double auction, Public good provision...

2 Complete information: environments, games, solution

concepts, welfare

For the purpose of this section all of the following concepts and considerations are common

knowledge among all entities (defined below) including the entities themselves. Also, for now

these environments are all cardinal, in that the individuals have utility functions rather than

simply preference rankings (in which case such an environment would be ordinal).

Environment with complete information is given by (N, Y, u, c); c is optional, in particular,

when c ≡ 0 (see below) we can omit it from the description of the environment in which case

the environment is given by (N, Y, u).
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• N = {1, ..., n} individuals (abbr: sg: indiv; pl: indivs), i ∈ N , j 6= i,−i = N \ {i}; until

further notice (probably almost always) we will assume that N is finite; in some cases

N = {0, 1, ...n} – see example auction below.

• Y is the set of social allocations (abbr, sg: aloc, pl: alocs) where Y = X (no transfers) or

Y = X × Rn, most often X is finite or at least compact; X is the set of alternatives (sg:

alt; pl: alts) and Rn are transfers (or prices); Mostly environments with transfers, where

y ∈ Y : y = (x, p), x ∈ X, p ∈ R are prices (transfers); a negative pi < 0 is a payment by

indiv i and a non-negative pi ≥ 0 signifies a receipt by i;

• u utility functions; ui : Y → R, “increasing,” concave...

Special case: separable utility1, ui(y) = νi(x) + ūi(p);

Important special case – quasi-linear environment: ui(y) = νi(x) + pi.

• c is the cost function in environments with transfers – this is optional and is used to

describe feasibility when convenient; c : X → R; when c(x) < 0 then c can be interpreted

as the social cost of alt x; when c(x) ≥ 0 it is the aggregate social gain of social alternative

x (this requires some entity outside the environment willing to pay numeraire into the

system for the social alternative x, e.g., installing toxic waste facility).

Key: Here, a y ∈ Y is feasible, if it satisfies budget balance,

∑
i∈N

pi ≤ c(x) (1)

It satisfies exact budget balance when above is an equality.

• VERY IMPORTANT: RANDOMIZATION; CONVENTIONS (abuse of notation). When-

ever appropriate (which is most of the time), Y also describes the set of randomized alocs,

1(shitty, possibly inconsistent notation of ū bc we will almost never work with this here anyways, meant
more as an example, if it becomes an issue later revise)
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or lotteries over alocs; E.g., in environment w/ transfers y is a lottery over X × Rn.

ωy = (ωx, ωp) is then a realization from that lottery;2

Denote by support(y) the support of the lottery y (see some probability theory/measure

theory book, e.g., Durret, Rudin...).

ui(y) is then interpreted as expected utility of i w.r.t. the lottery y,

ui(y) = Ey[ui(ωy)] = Ey[ui(ωx, ωpi). (2)

Important: budget balance (as well as exact budget balance) can then take two forms.

Strong budget balance (exact when equality) – budget balance point-wise w.r.t. all real-

izations of lottery y: ∑
i∈N

ωpi ≤ c(ωx),∀ωy ∈ support(y). (3)

Weak budget balance (exact when equality) – budget balance required only on average

w.r.t. lottery y: ∑
i∈N

Ey[ωpi ] ≤ Ey[c(ωx)]. (4)

IMPORTANT: i will mostly write out the definition for deterministic case and the defi-

nition for randomized case follows from the conventions adopted herein.

Several examples of environments that will be used throughout (here described for the case of

complete information, mostly with transfers, to be appended later):

• Trivial environment (useful to think about the most trivial possible)

• Bargaining (bilateral trade) over one indivisible good (with complete information this is

equivalent to bargaining over one unit of surplus, i.e., divisible): N = {1, 2}, usually 1 is

2important to note that y = (x, p) should not be used then as this would suggest statistical independence,
i.e., that y is a product of its marginal distributions over X and Rn.
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the seller, 2 is the buyer, with transfers, X = {1, 2}, x = i means that indiv i gets the

good; quasi-linear, νi(x) = 1{x=i}, where 1{x=i} is the indicator function,

1{x=i} =


1, if x = i,

0, if x 6= i.

Therefore, ui(y) = 1{x=i} + pi. Note here c ≡ 0. One could expand this example to allow

for free disposal of the good

• Provision of an indivisible public good (equivalent to multilateral bargaining over one

unit of surplus, after normalization), e.g., constructing a bridge, cost normalized to 1:

N = {1, ..., n}, X = {0, 1}, quasi-linear, νi(x) = vi1{x=1}, where vi ∈ [0, 1] is the value of

the public good to the indiv i; c(0) = 0, c(1) = 1.

• Auction of one indivisible commodity (good) with zero production cost: N = {0, 1, ..., n},

i = 0 is the seller, X = N , x = 0 means the good is unsold, quasi-linear, νi(x) = vi1{x=i},

v0 = 0, vi ∈ [0, 1], i > 0, c ≡ 0. If convenient and causes no confusion we can also exclude

the seller from this description.

Measures of efficiency, or welfare evaluations: Pareto efficiency, social welfare function.

• Let y, y′ ∈ Y both be feasible. y′ Pareto dominates y if,

ui(y
′) ≥ ui(y),∀i ∈ N, with at least one strict inequality. (5)

Notation: y′ � y.

• y ∈ Y , y feasible, is Pareto efficient (or classically efficient or efficient) if 6 ∃y′ ∈ Y , such
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that y′ is feasible and y′ � y.

• Let λ ∈ RN , λi ≥ 0, and define the utilitarian social welfare function W λ(.) by,

W λ(y) =
∑
i∈N

λiui(y), y ∈ Y. (6)

• For a set B denote by cl(B) its closure.3 We have the following theorem (elementary to

prove, well known, see Wilson,...).

Theorem 1. Let Y be convex and ui increasing and concave. Then,

cl({y ∈ Y | y = arg max
y′∈Y,y′ feasible

W λ(y′), λ ∈ RN
+} = {y ∈ Y | y Pareto efficient}.

• A special case is the egalitarian social welfare function where λi = 1,∀i.

Another special case is maximizing the utility of a particular indiv j in which case λj = 1,

λi = 0,∀i 6= j.

• In a quasi-linear environment the alt x, which maximizes any social welfare function

(under “reasonable” feasibility requirements) is always the same – the one that maximizes

the so-called social surplus (can prove this as an exercise).

A game of complete information.4

In an environment (N, Y, u, c) a game is given by (A, γ); Or, a game in an environment is given

by (N, Y, u, c, A, γ).

3(appropriately defined in the context of the space in which B lives, should be unambiguous otherwise need
to define the topology of that space etc.)

4(here i will mostly only consider simultaneous-moves games and won’t consider extensive-form games unless
specified otherwise).
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an indiv in a game is usually called player.

Note that this contrasts with most definitions in the literature (see below).

• A = ×i∈NAi, where Ai is the set of actions of indiv i, ai ∈ Ai is action of indiv i, a ∈ A

is a profile of actions.5

• γ : A → Y is the outcome mapping, so that u(γ(a)) are the utilities of the indivs when

the action profile is a ∈ A.

An interpretation of a game is that it is an institution which mediates interactions and

thus leads to different allocations depending on the indivs’ actions within the institution.

Note that in the literature (see Myerson, Osborne and Rubinstein,...) a game is usually

defined in reduced form by (N,A, u), where indivs’ (or players’) utilities are directly on

profiles of actions.

IMPORTANT: consistent with this we will use a shorthand abuse of notation: ui(a) =

ui(γ(a)).

• IMPORTANT: Note that in general, γ may also map into randomized outcomes;

it may also be that a is a randomization over actions in which case.

Conventions regarding randomizations apply.

Strategies S and solution concepts.

• S = ×i∈NSi is the set of indivs’ strategies in a game, where si ∈ Si is the strategy of

player i, s ∈ S is a strategy profile.

Here Si is the set of lotteries over Ai.

According to all the previous conventions we may use shorthand notation ui(s).

5Note that it is entirely without loss of generality to consider action set, which is a Cartesian product of
indivs’ action sets.
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• A strategy profile s constitutes a dominant strategy equilibrium if,

ui(si, s
′
−i) ≥ ui(s

′
i, s
′
−i),∀i, s′i, s′−i. (7)

• A strategy profile s constitutes a Nash equilibrium if,

ui(s) ≥ ui(s
′
i, s−i),∀i, s′i. (8)

• Note that an outcome in a game needs to be appropriately defined (think); more about

that later.

• We will also perhaps later define notions of correlated equilibrium in various ways under

various circumstances.
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